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Functions

Lecture 20 Functions are a central concept in mathematics
and computer science.

The general idea is to relate arguments (or inputs) with
unique values (or outputs).

This succinctly characterizes what computers do:

Examples:

Input Output
x ∈ Q x · x
x ∈ N x is odd
x ∈ N\{0} prime factorization of x
integer array A sorted A
chess position x move in position x
weather data d weather forecast based on d
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Definition: A function (or mapping) from A to
B is a relation f from A to B such that

1. dom(f) = A, and

2. if (x, y) ∈ f and (x, z) ∈ f , then y = z

We write f : A → B which is read “f is a function
from A to B”, of “f maps A to B”. B is called the
codomain of f . In case where A = B, we say f is a
function on A.

For f : A → B we write y = f (x) when (x, y) ∈ f .
We say y is the value (or image) of f at x and
that x is the pre-image of y under f .
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Important:

f (x) does not denote a function!

f does. f (x) denotes the image of x under f , which
is an element of the codomain of f .

Sadly, in practice this distinction is often blurred.

E.g., when functions are described as x+1 or z2, what
is (maybe) meant is this:

f : R→ R, with f (x) = x + 1, and

g : N→ N, with g(z) = z2.

Note, that we can’t be sure about the domains!

Similarly, expressions like

f = x + 1

where f is meant to be a function and x is a number
are mathematical nonsense.

Whenever you use = in your derivations, make sure that
both sides refer to objects of the same type.
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Function vs. Relation Examples

G = {(x, y) ∈ R2 | y + x = 1} with domain R.

Is this a function?

Yes, because for each x value there exists exactly one
value y such that y + x = 1, namely y = 1− x.

H = {(x, y) ∈ R2 | x2+y2 = 1} with domain [−1, 1].
Is this a function? No, because

(0,−1), (0, 1) ∈ H,
i.e. for x = 0 there exist two distinct values y1, y2 with
(x, yi) ∈ H, which means H is not a function.
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So, a function relates exactly one codomain element to
each element of the domain.

Why do we differentiate between codomain and range?

Because we don’t require all elements of the codomain
to be images!

Definition: Let f : A→ B and S ⊆ A. The image
of S is defined as follows:

f (S) := {b ∈ B | ∃a ∈ S : b = f (a)

Consequently, f (S) ⊆ B and rng(f ) = f (A).
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Function Examples

Let A be any set. The identity relation on A given by

IA = {(a, a) | a ∈ A}
is in fact a function on A — the identity function.
Why?

So, we can write a = IA(a), which holds for each
a ∈ A.

Another important function type is constant func-
tions f : A→ B, given by

f (a) = c

for each a ∈ A and some fixed (constant) c ∈ B.

Example: f (x) = 1 for all x ∈ R

CMPUT 272, F2010, M. Buro Characteristic Functions 8

Characteristic Functions

Let U be a set — called the “universe” — and A ⊆ U .

Define
χA : U → [0, 1]

by

χA(x) =

{
1 if x ∈ A
0 if x 6∈ A

which is called the characteristic function of set
A. (χ: greek letter chi, lower case X, pronounced kai)

Example: U = R and A = [−1, 3)



CMPUT 272, F2010, M. Buro Characteristic Functions 9

Theorem: Let A,B ⊆ U and x ∈ U , then

1. χAc(x) = 1− χA(x) (complement w.r.t. U)

2. χA∩B(x) = χA(x) · χB(x)
3. χA∪B(x) = χA(x) + χB(x)− χA(x) · χB(x)
Proof: Exercise.

Illustration: U = R, A = [0, 2), B = (−1, 1]
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Floor and Ceiling Functions

Two functions — floor and ceiling — that often occur in
the analysis of algorithms map real numbers to integers
like so:

bxc := biggest integer ≤ x (“floor” or “round down”)

dxe := smallest integer ≥ x (“ceiling” or “round up”)

Examples:

b3c = d3e = 3 b3.4c = 3 d3.4e = 4

b−3.4c = −4 d−3.4e = −3

Graphs of floor and ceiling:

CMPUT 272, F2010, M. Buro Floor and Ceiling Functions 11

Theorem: Let x ∈ R and k ∈ Z, then

1. bxc = k iff k ≤ x < k + 1

2. dxe = k iff k − 1 < x ≤ k

3. bxc ≤ x ≤ dxe
4. bxc > x− 1 and dxe < x + 1

5. bx + kc = bxc + k and dx + ke = dxe + k

6. bk2c + dk2e = k

7. bxc = −d−xe and dxe = −b−xc
Proof:

5. Let l = bx+ kc. Then with (1.), l ≤ x+ k < l+ 1

(subtract k from all terms, inequalities stay valid)

⇒ (l − k) ≤ x < (l − k) + 1

(1.)⇒ l − k = bxc
⇒ l = bxc + k ⇒ bx + kc = bxc + k

The proof of the second part is analogous.
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7. Let l = d−xe
(2.)⇒ l − 1 < −x ≤ l (·(−1) : flip inequalities)

⇒ −l + 1 > x ≥ −l (reverse order)

⇒ −l ≤ x < −l + 1

(1.)⇒ −l = bxc
⇒ −d−xe = bxc
Again, the second part can be shown analogously.

Other: Exercise.
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Sequences

A function with domain N (or N>0 := N\{0}) is called
an infinite sequence.

Example: the infinite sequence of numbers

1,
1

2
,
1

3
,
1

4
, . . .

can be described as function a : N>0→ R with

a(i) =
1

i
Infinite sequences are commonly denoted as

(ai)
∞
i=1

where ai := a(i). Calculus studies properties of such
sequences, like boundedness or convergence.

Finite sequences can be described as functions with
domain {1 . . . k} for some k ∈ N>0.

E.g. (bi)
5
i=1 = (2, 4, 6, 8, 10), with bi := b(i) = 2 · i
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Functions with Multiple Arguments

Lecture 21

Up to now we have only considered functions with one
argument, but often it is convenient to allow two or
more.

Consider the expression: 3 + 2

It denotes the application of function + to two integer
arguments: 2 and 3.

Using our notation that names the function first and
can only deal with one argument we could write it as

+( (2, 3) )

or
+(x), with x = (2, 3)

where + is the symbol for the addition function that as
argument receives a pair of integers, and returns their
sum as a result, i.e.

+ : Z2→ Z, with +( (a, b) ) = sum of a and b
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Thus, we only have to deal with one-argument func-
tions, even if inputs consist of multiple values.

However, writing double pairs of parenthesis when ap-
plying a function to a tuple is cumbersome and doesn’t
add any value apart from mathematical rigor.

In practice, the second parenthesis pair is therefore usu-
ally dropped with the understanding that n arguments
separated by commas correspond to one argument that
is an n-tupel.

E.g.

f (x1, x2, x3) denotes f ( (x1, x2, x3) )

Definition:
Assuming the flattened argument representation we just
described, functions with more than one arguments are
called multivariate functions and single-argument
functions are called univariate functions.
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Prefix, Infix, Postfix Notation

If we have one or more than two arguments we have
the choice of either using prefix or postfix notation
for functions:

f (x1, x2, . . . , xn) or (x1, x2, . . . , x3)f

i.e. we name the function symbol first or last, repec-
tively.

Postfix notation looks odd, but is in fact used in Hewlett
Packard calculators, where you type

5 ENTER 3 ENTER 2 + +

to compute 5 + (3 + 2), and so called stack-machines
(e.g. the Java Virtual Machine), in which all arguments
are pushed on a last-in-first-out data structure (called
stack), and operators (another name for functions) pop
arguments from the stack and push the result back onto
the stack.

With two arguments, we have a convenient third option:
infix notation, which names functions in between their
arguments similar to how we used it for relations (aR b):

x + y x− y x · y x/y
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Surjective Functions

Definition: A function f : A → B is surjective (or
onto B) iff Rng(f ) = B. If f is surjective we write

f : A
surj→ B.

Equivalently, surjective functions can be defined as func-
tions for which there is at least one pre-image for
each element of the codomain.

Examples:

f : R surj→ R, with f (x) = x, is surjective because for
each y ∈ R there is an x ∈ R — namely x = y with
y = f (x).

g : R→ R, with g(x) = x2, is not surjective because,
y = −1 is not an image of any x ∈ R, because all
images are ≥ 0.

However, h : R surj→ R≥0, with h(x) = x2 is surjective,
because for y ≥ 0, x =

√
y is a pre-image.
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Injective Functions

Definition: A function f : A → B is injective (or
one-to-one) iff whenever f (x) = f (y), then x = y.

If f is injective we write f : A
inj→ B.

Alternatively, injective functions can be defined as func-
tions for which there is at most one pre-image for
each element of the codomain.

Examples:

f : R inj→ R, with f (x) = x, because for each y ∈ R
there is exactly one x ∈ R — namely x = y — with
y = f (x).

g : R → R, with g(x) = x2, is not injective because,
y = 1 has two pre-images: x = −1 and x = 1

However, h : R≥0
inj→ R, with h(x) = x2 is injective,

because y ≥ 0 has exactly one pre-image (x =
√
y)

and y < 0 has none.
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Bijective Functions

Definition: A function f : A→ B is a bijective (or
one-to-one correspondence) iff f is surjective and
injective. If f is bijective we write f : A↔ B.

Alternatively, bijective functions can be defined as func-
tions for which there is exactly one pre-image for
each element of the codomain.

Examples:

f : R ↔ R, with f (x) = x, is bijective because it is
injective and surjective, as we have seen before.

g : R → R, with g(x) = x2, is not bijective, because
it is not surjective.

However, h : R≥0↔ R≥0, with h(x) = x2 is bijective,
because it is both injective and surjective.
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New Functions from Old

Because functions are specialized relations, the earlier
definitions of the inverse and composition of relations
apply.

However, the nature of functions will allow us to sim-
plify definitions and prove theorems that don’t hold for
relations in general.

Function Composition

Definition: For functions g : A→ B and f : B → C
the composite of f and g is the relation from A to
C:

f ◦ g = {(x, z) | ∃y ∈ B : (x, y) ∈ g ∧ (y, z) ∈ f}

The composite relation is always a function itself, as we
will soon prove.

We can take advantage of the fact that each element of
the domain of a function has a unique image to simplify
the notation for composition.
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Let g : A→ B and f : B → C.

Because
(x, y) ∈ g and (y, z) ∈ f

can be written in the form

y = g(x) and z = f (y),

we can write z = f (g(x)), i.e.

(f ◦ g)(x) = f (g(x))

With this observation, we have an alternative definition
of function composition:

f ◦ g = {(x, f (g(x))) | x ∈ A}
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Theorem: Let A,B and C be sets and g : A → B
and f : B → C. Then

1. f ◦ g is a function from A to C, and

2. Dom(f ◦ g) = A.

Proof: 1. From Part 3 we know that f ◦g is a relation
from A to C.

To show that f ◦ g is a function from A to C, let
(x, z) ∈ f ◦ g and (x, z′) ∈ f ◦ g.

We must prove that z = z′.

Because
(x, y), (x, y′) ∈ f ◦ g

there exist b, b′ ∈ B with

(x, b) ∈ g, (b, y) ∈ f and (x, b′) ∈ g, (b′, y′) ∈ f.

Since g is a function, b = b′.

Therefore, (b, y) ∈ f and (b, y′) ∈ f , which implies
y = y′, because f is a function.

2. Exercise �
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Theorem: Let A,B,C, and D be sets and h : A →
B, g : B → C, and f : C → D. Then

(f ◦ g) ◦ h = f ◦ (g ◦ h)
and their domain is A.

Proof: The result follows from the associativity of
composing relations and the previous Theorem which
implies that the domain of both sides is A. �
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Example 1: Consider function f on R given by

f (x) = (x + 1)2

Then
f = h ◦ g

where g, h are functions on R with

g(x) = x + 1

h(x) = x2

Example 2: Consider function f on R given by

f (x) = x + x2

Then
f = t ◦ h ◦ g

where g : R→ R2, h : R2→ R2, t : R2→ R with

g(x) = (x, x)

h(x, y) = (x, y2)

t(x, y) = x + y
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Example 3: Consider functions g, h on R given by

g(x) = 3x

h(x) = x/3

Then
f = h ◦ g = IR

because f (x) = h(g(x)) = (3x)/3 = x.

Example 4: Consider functions f, g, h on R given by

f (x) = x + 1

g(x) = 2x

h(x) = x2

Then

((f ◦ g) ◦ h)(x) = (f ◦ g)(h(x)) = (f ◦ g)(x2)
= f (g(x2)) = f (2x2) = 2x2 + 1
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The Inverse of a Function

Lecture 22

Definition: For a function f : A → B, the inverse
of f is the relation from B to A:

f−1 = {(y, x) | (x, y) ∈ f}

In general, f−1 is a relation, and might not be a func-
tion.
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Examples

f : R→ R with f (x) = 1, f−1 = {(1, x) | x ∈ R}
g : R→ R with g(x) = x, g−1 = {(x, x) | x ∈ R}
h : R→ R with h(x) = x2, h−1 = {(x2, x) | x ∈ R}

The inverse of a function on R can be obtained by
mirroring all points on the diagonal y = x.

g−1 is a function, but f−1 and h−1 are not, because
(1, 1), (1,−1) ∈ f−1 and h−1.
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Pointwise Function Definition

Consider functions f, g : A→ R.

From f, g we can construct a new function h pointwise
by defining for each x ∈ A:

h(x) = f (x) + g(x)

or
h(x) = f (x) · g(x)

or based on any other function t : R2→ R:

h(x) = t(f (x), g(x))

If we construct h in this way, we write h = f t g,
e.g. h = f + g or h = f · g
Note that +, · in this case denote operations on func-
tions which refer to the functions with the same name
from R2 to R that are used to construct them.
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As an example, consider pointwise addition or multipli-
cation of infinite sequences a, b : N→ R:

c = a + b, i.e. for all i ∈ N:

ci = ai + bi

c = a · b, i.e. for all i ∈ N:

ci = ai · bi

Examples:

a : (0, 1, 2, 0, 1, 2, 0, 1, 2, . . .)
b : (1, 1, 1, 1, 1, 1, 1, 1, 1, . . .)
c = a + b : (1, 2, 3, 1, 2, 3, 1, 2, 3, . . .)

a : (0, 1, 2, 0, 1, 2, 0, 1, 2, . . .)
b : (2, 1, 2, 1, 2, 1, 2, 1, 2, . . .)
c = a · b : (0, 1, 4, 0, 2, 2, 0, 1, 4, . . .)

Characteristic functions are also defined pointwise.
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Some Basic Theorems About Functions

Theorem: Let g : A→ B and f : B → C. Then

1. If f, g are surjective, so is f ◦ g.

2. If f, g are injective, so is f ◦ g.

3. If f, g are bijective, so is f ◦ g.

4. If f ◦ g is surjective, so is f .

5. If f ◦ g is injective, so is g.

6. g−1 is a function from Rng(g) to A iff g is injective.

7. If g−1 is a function, then g−1 is injective.

8. If g is bijective, so is g−1

Proof:

1.+5.+7.+8. Exercise

2. Suppose f (g(x)) = f (g(y)). Then g(x) = g(y)
because f is injective, and x = y because g is injective.

3. Follows from 1. and 2.
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4. f ◦ g surjective ⇒ Rng(f ◦ g) = C

⇒ ∀c ∈ C ∃a ∈ A : f (g(a)) = c

⇒ ∀c ∈ C ∃b ∈ B : f (b) = c (choose b = g(a))

⇒ Rng(f ) = C

6. a) Prove g−1 is a function from Rng(g) to A ⇒ g
is injective.

Suppose g(x) = g(y) = z

⇒ (z, x), (z, y) ∈ g−1

⇒ x = y (because g−1 is a function)

b) Prove: g is injective ⇒ g−1 is a function from
Rng(g) to A

Dom(g−1) = Rng(g) and Rng(g−1) = Dom(g) = A,
therefore g−1 is a relation from Rng(g) to A.

Let (x, y), (x, z) ∈ g−1. Then (y, x), (z, x) ∈ g and
y = z because g is injective. This means g−1 is a
function. �


