
CMPUT 204, F2010, M. Buro Contents 1

Part 7: Greedy Algorithms

Contents

• Greedy Algorithms p.2

•Minimum Spanning Trees p.5

• Single-Source Shortest Paths p.14

• Huffman Codes p.21

[document finalized]

CMPUT 204, F2010, M. Buro Greedy Algorithms 2

Greedy Algorithms

Lecture 28

Greed, for lack of a better word,
is good! Greed is right! Greed works!
(Gordon Gekko in “Wall Street”, 1987)

In this section we will study problems in which greedy
decisions lead to optimal solutions.

As a first example consider the coin-change problem:

Give change for a specific amount n with the least num-
ber of coins of denominations d1 < d2 < . . . < dm.

For example: d1 = 1, d2 = 5, d3 = 10, d4 = 25 cents

How to change 48 cents using such coins?

One obvious solution is 25 + 10 + 10 + 1 + 1 + 1 = 48.

We could have started with a smaller coin, but our
“greedy” thinking leads to choosing a quarter first be-
cause it reduces the remaining amount the most.

It can be proved that for above denominations the greedy
solution is in fact optimal, but this is not always true.

CMPUT 204, F2010, M. Buro Greedy Algorithms 3

Leave out nickels, for instance, and try to change 30
cents.

The greedy approach suggests 25 + 1 + 1 + 1 + 1 + 1,
whereas 10 + 10 + 10 is better.

There are general cases for which the greedy approach
computes optimal solutions, such as

(1, c, c2, . . . , ck−1, ck), k ≥ 0, c ≥ 2

and it is known that smallest counter examples x for
the optimality of the greedy algorithm for

(1, d2, d3, . . . , dm−1, dm)

lie in range

d3 + 1 < x ≤ dm−1 + dm

(Kozen and Zaks, 1994)

CMPUT 204, F2010, M. Buro Greedy Algorithms 4

In general, the greedy approach suggests constructing
a solution through a sequence of steps, each expanding
a partially constructed solution obtained so far, until a
complete solution to the problem is reached.

At each step the choice made must be

• feasible, i.e. it has to satisfy the problem’s con-
straints

• locally optimal, i.e. it has to be the best local choice
among all feasible choices available on that step

• irrevocable, i.e. once made, it cannot be undone.

Greedy algorithms are both intuitively appealing and
simple. The underlying theory is based on combinatorial
structures called matroids, which we don’t have time to
study here (see for instance CLRS)



CMPUT 204, F2010, M. Buro Minimum Spanning Trees 5

Minimum Spanning Trees

“Given n points, find the cheapest possible way to con-
nect them.”

Points ∼ vertices in graph

Connections ∼ weighted edges

���

���

���

���

Definitions:

A spanning tree of a finite connected graph G =
(V,E) is a tree T = (V,ET ) with ET ⊆ E.

A minimum spanning tree (MST) of a finite weighted
graph G = (V,E,w) is a spanning tree of G with min-
imum weight. I.e.

CMPUT 204, F2010, M. Buro Minimum Spanning Trees 6

T = (V,ET ) is MST of G

⇔
T is a spanning tree of G and w(T ) :=

∑
e∈ET w(e)

is minimal over all spanning trees of G.

Note that minimum spanning trees are well defined be-
cause the number of subgraphs of finite graphs is finite.

Example

T1 is the only MST of G

It seems to be the result of growing the tree greedily by
choosing edges with small weights first.

CMPUT 204, F2010, M. Buro Minimum Spanning Trees 7

Indeed, MSTs can be computed by greedy algorithms:
Prim-Jarńık’s (1957,1930) and Kruskal’s (1956).

Prim-Jarńık’s Idea:

// input: connected finite graph G = (V,E)
// output: MST of G
function PrimJarnik((V = {v1 . . . vn}, E))
VT = {v1}
ET = ∅
for i← 1 to n− 1 do

find minimum-weight edge e∗ = {v∗, u∗}
among all edges {v, u} ∈ E so that

v ∈ VT and u ∈ V − VT
VT ← VT ∪ {u∗}
ET ← ET ∪ {e∗}

end

return (VT , ET )

CMPUT 204, F2010, M. Buro Minimum Spanning Trees 8

Example



CMPUT 204, F2010, M. Buro Minimum Spanning Trees 9

Theorem: Prim-Jarńık’s algorithm is correct.

Proof:

Claim: Each of the trees T (i) = (V
(i)
T , E

(i)
T ) for i =

0, . . . , n− 1 generated by the algorithm is a subgraph
of some MST of G.

This implies that T (n−1) is an MST of G because it
contains all vertices of G.

Induction Base i = 0:

T (0) = ({v1}, ∅) has no edges, so the claim is trivially
true.

CMPUT 204, F2010, M. Buro Minimum Spanning Trees 10

Induction Step i− 1 i:

Suppose T (i−1) is a subtree of some MST T of G

in which e with w(e) ≥ w(e∗) connects V
(i−1)
T with

V − V (i−1)
T .

Then T ′ = T − e + e∗ is also an MST of G because

w(T ′) = w(T )− w(e) + w(e∗) ≤ w(T ).

Thus, e∗ is part of an MST, and T (i) is a subtree of an
MST. �

CMPUT 204, F2010, M. Buro Minimum Spanning Trees 11

What is the runtime of Prim-Jarńık’s algorithm?

This depends on the chosen data structures.

For example, assuming nodes are named 1 . . . n and
weights are stored in a matrix, consider three arrays:

closest[v]: vertex in VT closest to v
mincost[v]: weight of edge connecting v with VT
intree[v]: true iff v is in VT

Initialization: Time O(|V |)

closest[2, . . . , n]← 1
mincost[i]← w({1, i}) for all i ∈ V
intree[2..n]← false; intree[1]← true

CMPUT 204, F2010, M. Buro Minimum Spanning Trees 12

Find minimum edge: Time O(|V |)
find u∗ in V − VT with

smallest mincost value

edge to add: e∗ = {closest[u∗], u∗}

Update: Time O(|V |)
for each v ∈ V − VT do

if mincost[v] > w({u∗, v}) then

mincost[v] ← w({u∗, v})
closest[v] ← u∗

end

end

intree[u∗]← true



CMPUT 204, F2010, M. Buro Minimum Spanning Trees 13

Lecture 29

Total time: O(|V |2)

This is optimal for dense graphs (|E| ∈ Θ(|V |2))

For sparse graphs (|E| ∈ O(|V |)) we can do better:

Assuming that the graph is represented by adjancy lists
and we store the current distances from nodes to VT
in a min-heap, it is not hard to see that the runtime of
the Prim-Jarńık algorithm using these data structures
is

O(|E| log |V |)

There is a second greedy approach available for com-
puting MSTs: Kruskal’s algorithm, which grows forests
by adding lightest edges that do not create a cycle.

Runtime: O(|E| log |E|)

CMPUT 204, F2010, M. Buro Single-Source Shortest Paths 14

Single-Source Shortest Paths

Given a directed weighted graph G = (V,E,w) with
non-negative weights and a node v0, we want to find
minimal weights of paths from v0 to all other nodes.

Dijkstra’s Idea (1959):

Starting with v0 grow node set S by adding nodes v ∈
V − S maintaining
• the minimal weights of paths from v0 to v ∈ S that

stay in S, and

• the minimal weights of paths from v0 to v ∈ V −S
that stay in S except for the last edge.

CMPUT 204, F2010, M. Buro Single-Source Shortest Paths 15

// input: directed weighted graph, v0
// weights ≥ 0, w(i, i) = 0 for all i ∈ V
// output: array of shortest distances from v0

function Dijkstra((V = {1 . . . n}, E, w), v0)

S ← {v0}
for each v ∈ V do D[v]← w(v0, v) end

while S 6= V do

choose u ∈ V − S such that D[u] minimal

S ← S ∪ {u}
for all v ∈ V − S do

D[v]← min{D[v], D[u] + w(u, v)}
end

end

return D

CMPUT 204, F2010, M. Buro Single-Source Shortest Paths 16

Example



CMPUT 204, F2010, M. Buro Single-Source Shortest Paths 17

Lecture 30

Claim: Dijkstra’s algorithm computes the minimal wei-
ght of paths from v0 to any other node in V in time
O(|V |2), if arrays are used.

Proof: The algorithm terminates because in each iter-
ation S grows by one element. So S = V after |V |−1
iterations.

Each iteration takes O(|V |) time, for a total runtime
of O(|V |2).

To prove that the output is correct, we show the fol-
lowing statements by induction: after the k-th iteration

i) for every node v ∈ S, D[v] is the minimal weight
of paths from v0 to v which we call δ(v0, v), and

ii) for every node v 6∈ S, D[v] is the minimal weight
of paths from v0 to v that contain only (besides v)
vertices in S.

Induction Base k = 0: the initialization of S = {v0}
and D ensures that i) and ii) hold before the first iter-
ation.

CMPUT 204, F2010, M. Buro Single-Source Shortest Paths 18

Induction Step k  k + 1:

Assume the induction hypothesis holds prior to the (k+
1)-st iteration.

To prove i), let u be the vertex added to S at the
(k + 1)-st iteration.

So, u 6∈ S and D[u] is the smallest D value of any
vertex not in S at the end of the k-th iteration.

From the induction hypothesis: vertices v ∈ S before
the (k + 1)-st iteration have D[v] = δ(v0, v).

Also, D[u] = δ(v0, u): by the induction hypothesis
(part ii) we know that D[u] is the minimum weight of
paths from v0 to u with intermediate nodes in S.

If there was a shorter path P
from v0 to u, consider the first
vertex v outside of S along P .
Then D[v] < D[u] (because
weights are ≥ 0), which con-
tradicts the choice of u.

Thus i) holds at the end of the (k + 1)-st iteration.

CMPUT 204, F2010, M. Buro Single-Source Shortest Paths 19

To prove ii), let u again be the vertex added to S and
let v be a vertex not in S after the (k+ 1)-st iteration.

A shortest path from v0 to
v inside S (except for v)
either contains u or it does
not.

If it does not contain u, then by the induction hypothe-
sis its weight is D(k)[v] – the previous iteration’s value.

If it does contain u, then it must be made up of a
path from v0 to u of shortest possible weight inside S
followed by edge (u, v).

In this case the path’s weight is D(k)[u] + w(u, v) by
the induction hypothesis part i).

This proves ii), because

D(k+1)[v] = min{D(k)[v], D(k)[u] + w(u, v)}
according to the algorithm.

Thus, the claim holds for all k, and when S = V ,
Dijkstra’s algorithm has computed all D[v] correctly�

CMPUT 204, F2010, M. Buro Single-Source Shortest Paths 20

Using a min-heap and adjacency lists for representing
the graph leads to runtime

O(|E| log |V |)
which is better for sparse graphs (exercise).



CMPUT 204, F2010, M. Buro Huffman Codes 21

Huffman Codes

Suppose you want to send text via a digital channel
(such as a computer network).

We are looking for mapping (also called code)

C : Words→ 0-1-Words

such that

• transmitted words can be decoded uniquely

• transmitted words are short

CMPUT 204, F2010, M. Buro Huffman Codes 22

Simplifying assumption:

C maps individual characters (also called symbols) to
0-1 sequences

I.e.

C(a1a2 · · · an) = C(a1)C(a2) · · ·C(an)

(By grouping symbols, the compression rate can be in-
creased)

Example:

Encode words over alphabet {a, b, c} using the follow-
ing code C:

C(a) = 0

C(b) = 00

C(c) = 1

Can we decode transmitted code words uniquely?

CMPUT 204, F2010, M. Buro Huffman Codes 23

No:

C(aa) = C(a)C(a) = 00

C(b) = 00

When seeing 00 the decoder can’t decide whether the
original message was aa or b

How to construct uniquely decodable codes?

The problem with the previous code is that

C(a) = 0 is a prefix of C(b) = 00

So when seeing 0 there are two possible choices.

CMPUT 204, F2010, M. Buro Huffman Codes 24

In prefix codes no code word is a prefix of any other
code word

0-1 codes can be represented as binary trees:

Path to symbol corresponds to code word

C(a) is prefix of C(b), b is a node in a subtree rooted
in a

Now consider code C ′:

C ′(a) = 01

C ′(b) = 00

C ′(c) = 1

In the tree corresponding to C ′ all symbol nodes are
leaves ⇒ C ′ is prefix code

Prefix codes are easy to decode:



CMPUT 204, F2010, M. Buro Huffman Codes 25

1. Start at root

2. read bits one by one, follow path

3. print symbol when reaching leaf

4. go to 1

Given an alphabet {a1, . . . , an} we are looking for pre-
fix code C that maps ai to 0-1 word C(ai).

Easy:

But: code words can be long (here n− 1)

How to tell good from bad codes?

CMPUT 204, F2010, M. Buro Huffman Codes 26

Suppose every symbol ai has a corresponding probabil-
ity pi to appear next in the message.

When transmitting a source text using code C, we are
interested in minimizing its expected code length:

L(C) =

n∑

i=1

pi · length(wi)

So, if pi is high, then wi = C(ai) should be short

Examples:

L(C ′) = 0.8 · 2 + 0.05 · 2 + 0.15 · 1 = 1.85,

i.e. on average, 1.85 bits are sent for each source symbol

L(C ′′) = 0.8 · 1 + 0.05 · 2 + 0.15 · 2 = 1.2 !

CMPUT 204, F2010, M. Buro Huffman Codes 27

Lecture 31 How to construct codes with minimal expected
code length?

Huffman’s idea (1952): Perhaps greed works.

Huffman Algorithm

Input: symbols 1, . . . , n with probabilities p1, . . . , pn

Output: a binary tree corresponding to a code with
minimal expected code length

Build tree recursively:

n = 2: return tree T ∗:

n > 2:
i) Sort pi’s in non-decreasing order, say

p1 ≤ p2 ≤ . . . ≤ pn

ii) Construct tree T for (p1+p2, p3, . . . , pn) recursively

iii) return tree that results from replacing the (p1 +p2)
leaf in T by tree T ∗

CMPUT 204, F2010, M. Buro Huffman Codes 28

Example

Define the weighted path length of binary tree T
with leaves 1, . . . , n and corresponding probabilites
p1, . . . , pn as

L(T ) :=

n∑

i=1

pi · depth(i)

∼ expected code length



CMPUT 204, F2010, M. Buro Huffman Codes 29

Theorem: A tree the Huffman algorithm generates for
input p1 ≤ p2 ≤ · · · ≤ pn has minimal weighted path
length among all full binary trees (out-degree 0 or 2)
with leaf probabilities p1, . . . , pn

Proof: Induction on n

n = 2:

There are only two full binary trees with two leaves:

Both have weighted path length p1 ·1+p2 ·1 = p1 +p2

< n→ n:

Suppose n ≥ 3 and the claim is true for smaller n.

Number of full binary trees with n leaves finite ⇒
∃ tree T for which L(T ) is minimal.

CMPUT 204, F2010, M. Buro Huffman Codes 30

Consider internal node x of T with maximal distance
to root r

If nodes 1, 2 are not the children i, j of x, then exchange
nodes 1, 2 with them.

Because T is minimal, nodes 1, 2 must have had the
same depth as nodes i, j (otherwise, exchanging nodes
would decrease the weighted path length)

⇒ there exists a minimal tree with nodes 1, 2 being the
children of an internal node with maximum depth.

Now, consider a tree T ∗ the Huffman algorithm gener-
ates for the updated symbol frequencies created from
the original by merging nodes 1 and 2.

By the induction hypothesis T ∗ is minimal.

Now, expand the leaf node corresponding to p1 +p2 by
adding the original leaves 1 and 2. Call the resulting
tree T .

We need to show that T is minimal.

CMPUT 204, F2010, M. Buro Huffman Codes 31

Consider the weighted path lengths of both trees:

L(T ) = L(T ∗)− l · (p1 + p2) + (l + 1) · (p1 + p2)

= L(T ∗) + p1 + p2

So, if T ∗ is minimal (as asserted by the induction hy-
pothesis), then T is also minimal, because:

If there was a tree T̄ with L(T̄ ) < L(T ) with nodes
1, 2 on the last level, then by merging 1, 2 as before we
can create a tree T̄ ∗ from it with

L(T̄ ∗) + p1 + p2 = L(T̄ ) < L(T ) = L(T ∗) + p1 + p2

I.e., L(T̄ ∗) < L(T ∗), which contradicts the induction
hypothesis. �

CMPUT 204, F2010, M. Buro Huffman Codes 32

Claim: The Huffman algorithm can be implemented
such that it runs in time O(n log n) given an unsorted
probability sequence (p1, . . . , pn).

Proof: Exercise.

Theorem: If w1 . . . wn are the binary codes assigned
by the Huffman’s algorithm to symbols with probabili-
ties p1 . . . pn. Then

pi < pj ⇒ length(wi) ≥ length(wj)

Proof: Exercise.



CMPUT 204, F2010, M. Buro Huffman Codes 33

How long can Huffman code words get for n symbols?

Maximum is n− 1.

A better upper bound is given in the following theorem:

Theorem (Buro 1993):
Given 0 < p1 ≤ p2 ≤ · · · ≤ pn no Huffman code word
is longer than

min{blogΦ(1/p1)c, n− 1},

where Φ = 1+
√

5
2 =̇ 1.618

Proof: Based on Fibonacci numbers.

Example: p1 = 1
3500 ⇒ |wi| ≤ 16

Huffman codes are used in many compression tools such
as

gzip, bzip2, lzw, zlib


