
CMPUT 204, F2010, M. Buro Contents 1

Part 3: Runtime Analysis

Contents

• Runtime Analysis of Iterative Algorithms p.2

• Runtime Analysis of Recursive Algorithms p.6

• Iterated Substitution p.16

•Master Theorem p.21

[document finalized]

CMPUT 204, F2010, M. Buro Runtime Analysis of Iterative Algorithms 2

Runtime Analysis of Iterative Algorithms

Example 1. Adding all numbers stored in an array

// assume n > 0

// input: array of n numbers

// output: sum of all numbers

function sum(A[0..n-1])

sum <- 0

for i <- 0 to n-1 do

sum <- sum + A[i] (*)

end

return sum

Runtime measured in number of steps in pseudo-code
representation

Strategy: identify line that is executed most often

Likely candidates are located in bodies of innermost
loops

Here: count how often line (*) is being executed: C(n)

Clearly, C(n) = n ∈ Θ(n)

Finding an asymptotic runtime upper bound (O, o,Θ)
also proves termination

CMPUT 204, F2010, M. Buro Runtime Analysis of Iterative Algorithms 3

Example 2: Check whether all elements in an array are
unique

Idea: generate all pairs (i, j) with i < j and return
false iff (= if and only if) such a pair exist with A[i]

= A[j]

// assume n > 0

function unique(A[0..n-1])

for i <- 0 to n-2 do

for j <- i+1 to n-1 do

if A[i] = A[j] then (*)

return false

end

end

end

return true

The runtime of this program can be measured as the
number of comparisons C(n) in line (*). All other
instructions are executed at most that often. Then:

C(n) =

n−2∑

i=0

n−1∑

j=i+1

1

We want to derive a closed-form representation of C(n)

CMPUT 204, F2010, M. Buro Runtime Analysis of Iterative Algorithms 4

and start with the innermost sum:
n−1∑

j=i+1

1 = (n− 1)− (i + 1) + 1︸ ︷︷ ︸
high-low+1 elements

= n− 1− i

So,

C(n) =

n−2∑

i=0

(n− 1− i) =

(n− 1)2
︸ ︷︷ ︸

(high-low+1)(n− 1)

− (n− 2)(n− 1)

2︸ ︷︷ ︸∑n−2
i=0 i

∈ Θ(n2)

because the quadratic terms don’t cancel each other
out.

CMPUT 204, F2010, M. Buro Runtime Analysis of Iterative Algorithms 5

Θ(n2) is slow for large n.

Better algorithm: sort sequence (can be done in time
O(n log n), as we will see later) and then check neigh-
bors for equality (O(n)). Total runtime is O(n log n)
which is much smaller than Θ(n2) for large n.

Looking back at the derivation of C(n) we see that hav-
ing two nested loops that count up to n led to quadratic
runtime. This is no coincidence and can be generalized:
for k such nested loops the innermost statements will
be executed Θ(nk) times.

CMPUT 204, F2010, M. Buro Runtime Analysis of Recursive Algorithms 6

Runtime Analysis of Recursive Algorithms

Example 1: Compute n! = 1 · 2 · · ·n (read: “n facto-
rial”)

Recursive definition:

0! := 1

n! := n · (n− 1)! for n > 0

Pseudo-code derived directly from the definition:

// assume n >= 0

function fact(n)

if n = 0 then

return 1

end

return n * fact(n-1) (*)

CMPUT 204, F2010, M. Buro Runtime Analysis of Recursive Algorithms 7

Each function call stores the return address on the sys-
tem stack, incremenents the stack pointer, jumps to
the function, and when it returns from it, decreases the
stack pointer, and resumes execution right after the
call.

Here is what happens when we call fact(n):

CMPUT 204, F2010, M. Buro Runtime Analysis of Recursive Algorithms 8

Runtime Analysis:

M(n) = number of multiplications executed in line (*)

M(0) = 0

M(n) = M(n− 1) + 1, n > 0

Want closed-form solution for this recurrence relation.

Apply it repeatedly to see an emerging pattern (“iter-
ated substitution”)

M(n) = M(n−1)+1 = M(n−2)+1+1 = M(n−2)+2

After i steps:

M(n) = M(n− i) + i

Recursion stops when i = n M(n) = M(0)+n = n

Runtime of fact on a RAM is therefore Θ(n).

CMPUT 204, F2010, M. Buro Runtime Analysis of Recursive Algorithms 9

Note: n! grows very quickly (15! = 1307674368000).
So, assuming that each multiplication takes constant
time vastly underestimates the runtime when execut-
ing function fact on a contemporary computer, which
usually stores 64-bit values in each memory cell. In this
case using the logarithmic-cost measure would be more
appropriate.

CMPUT 204, F2010, M. Buro Runtime Analysis of Recursive Algorithms 10

Example 2: Towers of Hanoi

Three pegs, n discs of decreasing size located on one
peg, smallest on top. Other pegs empty. Objective:
move all discs to another peg subject to the constraint
that no bigger disk can be placed on top of a smaller
one.

CMPUT 204, F2010, M. Buro Runtime Analysis of Recursive Algorithms 11

Solving the 3-disc case:

Observation: can be solved recursively by first moving
n − 1 discs to another peg, then moving the biggest
disk to the remaining peg, and then moving the n− 1
smaller discs on top the biggest disc.

CMPUT 204, F2010, M. Buro Runtime Analysis of Recursive Algorithms 12

In pseudo-code:

// move n disks from src to dst using aux

// assume n >= 0

function hanoi(n, src, aux, dst)

if n > 0 then

hanoi(n-1, src, dst, aux)

print "move " src " to " dst (*)

hanoi(n-1, aux, src, dst)

end

// Call to move n discs from peg 0 to 2: hanoi(n, 0, 1, 2)

Lecture 9

CMPUT 204, F2010, M. Buro Runtime Analysis of Recursive Algorithms 13

Output of hanoi(3,0,1,2):

move 0 to 2

move 0 to 1

move 2 to 1

move 0 to 2

move 1 to 0

move 1 to 2

move 0 to 2 Call trace:

CMPUT 204, F2010, M. Buro Runtime Analysis of Recursive Algorithms 14

Runtime measured in the number of times line (*) is
executed

M(1) = 1

M(n) = M(n− 1) + 1 + M(n− 1), n > 1

Use iterated substitution to obtain hypothesis

M(n)

= 2M(n− 1) + 1

= 2(2M(n− 2) + 1) + 1

= 4M(n− 2) + 2 + 1

= 8M(n− 3) + 4 + 2 + 1

= 2iM(n− i) + 2i−1 + 2i−2 + · · · + 2 + 1

= 2iM(n− i) + 2i − 1 (geometric series)

= 2n−1 M(1) + 2n−1 − 1(base case for i = n− 1)

= 2n − 1 (M(1) = 1)

CMPUT 204, F2010, M. Buro Runtime Analysis of Recursive Algorithms 15

Prove hypothesis by mathematical induction:

Induction base n = 1: M(1) = 1 OK

Induction step: assume M(n) = 2n − 1 (Induction
Hypothesis (I.H.))

Then, using the recurrence relation and the I.H., we get

M(n+1) = 2M(n)+1 = (I.H.) 2(2n−1)+1 = 2n+1−1

Thus, M(n) = 2n − 1 for all n ≥ 1.

Exponential runtime in n. Can we do better?

No. The n−1 stack needs to be moved to another peg
before the biggest disk can be moved. The biggest disk
needs to be moved at least once, and then the n − 1
stack must be moved again.

Result: our algorithm is optimal!

CMPUT 204, F2010, M. Buro Iterated Substitution 16

Iterated Substitution

1. Play with recurrence, apply several times

2. Identify emerging pattern

3. Determine when base case is reached

4. Guess closed form or bound

5. Prove closed form or bound by mathematical induction

Example:
T (1) > 0

T (n) = 2T (bn/2c) + n

For simplicity, we assume n = 2k, so that we don’t
have to deal with rounding down (bxc = max{y ∈ Z |
y ≤ x)} — pronounced “floor of x”. The floor’s twin
is called ceiling, denoted dxe, which rounds up.

Then T (n) = 2T (n/2)+n = 2(2T (n/4)+n/2)+n

= 4T (n/4) + n + n = 2iT (n/2i) + n · i

[reaches base case when n = 2i, i.e. i = log(n) = k]

= 2kT (1) + n log(n) = n · T (1) + n log n

CMPUT 204, F2010, M. Buro Iterated Substitution 17

Guess: T (n) ∈ O(n log n), which we try to prove by
showing

T (n) ≤ An log n + Bn

for all n ≥ 1 and suitable constants A > 0 and B that
we plan to determine along the way.

Induction Base n = 1: Plugging in n = 1 in above in-
equality yields

T (1) ≤ A · 1 · log(1) + B · 1 = B

For this to hold B ≥ T (1) is required.

Induction step: Now n > 1 and we assume

T (k) ≤ Ak log k + Bk

for all k < n. This is the induction hypothesis (I.H.).

By using the recurrence relation and the I.H. we obtain:

CMPUT 204, F2010, M. Buro Iterated Substitution 18

T (n) = 2T (bn/2c) + n

≤ 2
[
Abn/2c log(bn/2c) + Bbn/2c

]
+ n

≤ 2
[
A(n/2) log(n/2) + B(n/2)

]
+ n

because bxc ≤ x, and log is a monotonically increasing
function, i.e. x < y ⇒ log(x) < log(y). Therefore:

Lecture 10 T (n) ≤ An log(n/2) + Bn + n

= An(log(n)− 1) + Bn + n

= An log(n)− An + Bn + n

So, T (n) ≤ An log(n) + Bn (∗) holds if

−An + Bn + n ≤ Bn

⇔ − A + B + 1 ≤ B

⇔ − A + 1 ≤ 0

⇔ 1 ≤ A

Thus, with A = 1 and B = T (1) (∗) holds for all n.

So we know: T (n) ∈ O(n log n)

T (n) ∈ Ω(n log n) analogous T (n) ∈ Θ(n log n)
�

CMPUT 204, F2010, M. Buro Iterated Substitution 19

Frequent problem with iterated substitution:
Induction hypothesis not strong enough for the induc-
tion step

Example

T (n) = T (bn/2c) + T (dn/2e) + 1

We guess: T (n) ∈ O(n), e.g. T (n) ≤ C · n

Induction step:

T (n) ≤ Cbn/2c + Cdn/2e + 1 = Cn + 1

(Note: for all n ∈ N bn/2c + dn/2e = n)

Oops, that didn’t work. We needed to show T (n) ≤
Cn. But we can strengthen the induction hypothesis:

T (n) ≤ Cn−B (B > 0)

Then

T (n) ≤ Cbn/2c −B + Cdn/2e −B + 1

= C · n− 2B + 1 ≤ C · n−B,
if −2B + 1 ≤ −B, which is equivalent to B ≥ 1.

CMPUT 204, F2010, M. Buro Iterated Substitution 20

Sometimes changing variables works:

T (n) = 2T (b√nc) + log n

Intimidating. Our plan is to transform this recurrence
into something we know how to solve.

Try n = 2m ⇒
T (2m) = 2T (2m/2) + m

and let
S(m) := T (2m)

 (using the recurrence for T)

S(m) = 2S(m/2) + m

 (seen earlier)

S(m) ∈ O(m logm)

T (n) = T (2m) = S(m) ∈ O(m logm)

= O(log n log log n)

using m = log n, which follows from the assumption
n = 2m.

CMPUT 204, F2010, M. Buro Master Theorem 21

Master Theorem Finding a pattern using iterated sub-
stitution which is then followed by an induction proof
is cumbersome. We want a tool to solve a class of
frequently occurring recurrence relations like:

T (n) = T (bn/2c) + T (dn/2e) + 3n + 1

Note that often both floor and ceiling operations occur.

The following theorem is based on the so-called “Master
Theorem” (CLRS p.94, L p.483) which we will cite after
the simplified version without proof (which is rather
technical).

CMPUT 204, F2010, M. Buro Master Theorem 22

Master Theorem for Linear f

Suppose a ≥ 1, b ≥ 1 and T (n) = aT ({n/b}) + f (n),
with

• T (0) > 0

• f (n) eventually > 0
(i.e. ∃N ∀n ≥ N f (n) > 0), and

• {n/b} denoting bn/bc or dn/be or combinations
thereof.

If f (n) = An + B with A > 0 then,

1. If a > b, then T (n) ∈ Θ(nlogb a)

“total size of parts exceeds n”

2. If a = b, then T (n) ∈ Θ(n log n)

“total size of parts equals n”

3. If a < b, then T (n) = Θ(n).

“total size of parts smaller than n”

CMPUT 204, F2010, M. Buro Master Theorem 23

Examples in which the theorem applies (f is linear):

Case 1. T (n) = 4T (bn/3c) + 5T (dn/3e) + 4n + 1

The combined coefficient for all terms of form {n/3}
is 9 (a = 9),
and b = 3.

Therefore, a > b and T (n) = Θ(nlog3 9) = Θ(n2)

Case 2. T (n) = T (bn/3c) + 2T (dn/3e) + 5n
 a = 3, b = 3

Therefore, a = b and T (n) = Θ(n log n)

Case 3. T (n) = 2T (dn/3e) + 4n + 1
 a = 2, b = 3

Therefore, a < b and T (n) = Θ(n)

CMPUT 204, F2010, M. Buro Master Theorem 24

Master Theorem (CLRS p.94, L p.483)

Suppose a ≥ 1, b ≥ 1 and T (n) = aT ({n/b}) + f (n),
with

• T (0) > 0

• f (n) eventually > 0
(i.e. ∃N ∀n ≥ N f (n) > 0), and

• {n/b} denoting bn/bc or dn/be or combinations
thereof.

For λ = logb(a)

1. If f (n) ∈ O(nγ) for a γ < λ, then T (n) ∈ Θ(nλ)

2. If f (n) ∈ Θ(nλ), then T (n) ∈ Θ(nλ log n)

3. If f (n) ∈ Ω(nγ) for a γ > λ, and the smoothness
condition

af (n/b) ≤ cf (n)

holds for a c < 1 and all sufficiently large n, then
T (n) ∈ Θ(f (n))

CMPUT 204, F2010, M. Buro Master Theorem 25

Examples

Case 1: T (n) = 9T (bn/3c) +
√
n

a = 9, b = 3, λ = log3 9 = 2, f (n) =
√
n

Try to find a γ < λ = 2 such that f (n) ∈ O(nγ)

 f (n) ∈ O(n1), 1 < 2. OK

⇒ T (n) ∈ Θ(nλ) = Θ(n2)

Lecture 11

Case 2: T (n) = T (d2n/3e) + 1

a = 1, b = 3/2, λ = log3/2 1 = 0, f (n) = 1

 f (n) ∈ Θ(nλ) = Θ(1)

⇒ T (n) ∈ Θ(nλ log n) = Θ(log n)

CMPUT 204, F2010, M. Buro Master Theorem 26

Case 3:

T (n) = T (bn/4c) + 2T (dn/4e) + n log n

a = 3 (3 “n/4” cases), b = 4, λ = log4 3 ≈ 0.793

f (n) = n log n

Try to find a γ > λ such that f (n) ∈ Ω(nγ)

f (n) ∈ Ω(n1), 1 > 0.793 OK

⇒ T (n) = Θ(f (n)) = Θ(n log n) (∗)
IF

af (n/b) ≤ cf (n)

for large enough n and a c < 1. Let’s plug in f (n) and
check:

3(n/4) log(n/4) = (3/4)n log n− (3n/4) · 2
?
≤ cn log n

Yes, for c = 3/4 < 1 and n ≥ 1. Therefore (∗) holds.

CMPUT 204, F2010, M. Buro Master Theorem 27

Recurrence relation to which the theorem does not ap-
ply:

T (n) = 2T (bn/2c) + n log n

a = b = 2, λ = logb a = 1

Case 1? No:

∀γ < 1 : n log n 6∈ O(nγ)

Case 2? No:
n log n 6∈ Θ(n1)

Case 3? No:

∀γ > 1 : n log n 6∈ Ω(nγ)

But with the iterated substitution method we can show:
T (n) ∈ O(n(log n)2) — exercise.

Proof of Master Theorem for linear f from full version:
also exercise.

