
CMPUT 204, F2010, M. Buro Contents 1

Lecture 1

Part 1: Introduction

Contents

• Course Information p.2

• Algorithm Design and Analysis Overview p.4

• Pseudo-Code, RAM model p.8

•Math and Program Correctness Proofs Review p.15

[document finalized]

CMPUT 204, F2010, M. Buro Course Information 2

Course Information

Computing Science Theory Courses

272 Formal Systems and Logic in Computing
Science

An introduction to fundamental discrete structures used
for the design and analysis of algorithms, including:

• Propositional and predicate logic

• Sets

• Functions and arithmetic

• Proofs by induction

• Pre- and post conditions, loop invariants

• Relations

• Graphs

• Number theory

CMPUT 204, F2010, M. Buro Course Information 3

204 Algorithms I

• Introduction to algorithms

• Analysis: correctness, worst/average/best case be-
haviour, asymptotical runtime

• Algorithms: sorting and searching, optimization, graph
algorithms

• Design techniques: divide-and-conquer, dynamic pro-
gramming, greedy

304 Algorithms II

•More advanced algorithms, and their design and anal-
ysis, complexity, notion of reduction, NP-completeness

474 Formal Languages, Automata and Com-
putability

•More formal approach to models, complexity, and
computability

• Computational limitations

CMPUT 204, F2010, M. Buro Algorithm Design and Analysis Overview 4

Algorithm Design and Analysis Overview

Basic Concepts

• Algorithm: A well-defined step-by-step procedure that
computes an output from a given input, i.e. com-
putes a function

• Problem: Set of inputs satisfying certain properties
for which an algorithm computes outputs with cer-
tain properties.
Examples:
– Given natural numbers x and y, compute x · y
– Sort integer array A[0..n − 1] in non-decreasing

order

– Given a map, find the shortest route between two
points

• Problem Instance: a specific input for an algorithm
that solves a problem
Examples:
– (7, 8) is a problem instance for the multiplication

algorithm

– A[0..4] = (0,−2, 4, 10,−5) is one for sorting

CMPUT 204, F2010, M. Buro Algorithm Design and Analysis Overview 5

• Issues for a given algorithm
– Correctness — does the algorithm conform to the

input/output specification? This includes proving
that the algorithm stops for all valid inputs.

– Analysis of resource requirements
Time, Space, Bandwidth, ...

– Quality of the results (exact, approximation?, some-
times incorrect?)

– Optimality in terms of required resources.
E.g., finding the maximum element in an array
of size n can’t be done faster than linear time
because every element must be visited at least
once for the algorithm to be correct.

• Algorithm design concepts
– Choosing the right data structures: how to store

and organize for fast access and manipulation?

– Design techniques:
Greedy, Divide and conquer, Dynamic program-
ming, exhaustive search, etc.

CMPUT 204, F2010, M. Buro Algorithm Design and Analysis Overview 6

Methodologies for Analyzing Algorithms

• How do we know whether an algorithm is fast or
space efficient?

• Several factors involved: implementation language,
compiler, operating system, the way it is implemented,
test data, computer hardware (CPU, memory, disk,
etc.), and so on.

• The runtime often increases as the input size in-
creases

• So one way is to measure time in terms of input size

• Then run experiments for different input sizes and
see how the runtime increases

CMPUT 204, F2010, M. Buro Algorithm Design and Analysis Overview 7

• Problem with experimental analysis:
– We cannot run against all possible inputs, some-

times there are infinitely many!

– Even inputs of the same size may result in differ-
ent runtimes

– Some factors (like CPU, memory, implementa-
tion, etc.) can vary significantly; so test results
are very dependent on them.

• So we need an analytic way of measuring the run-
time independent of the environmental factors (CPU
speed, compiler, implementation, etc.)

• Idea:
– select abstract computer model that is simpler but

sufficiently close to modern computer hardware

– express runtime on this model (number of execu-
tion cycles) in terms of input size

CMPUT 204, F2010, M. Buro RAM Model and Pseudo-Code 8

RAM Model and Pseudo-Code

Lecture 2 Model of Computation

• Components
– Input device

– Output device

– CPU (Central Processing Unit)

– M: memory locations (each can store an integer)
M[0], M[1], M[2], . . .

CMPUT 204, F2010, M. Buro RAM Model and Pseudo-Code 9

– Program: fixed, finite, user-defined instruction se-
quence

• Properties
– CPU has direct access to any mem location (by

index)

– move data between memory cells

– compare data and branch

– binary arithmetic operations

– read from Input to memory

– write from memory to Output

• Primitive operations:
– assign a value to a memory cell

– (conditional) jump to instruction

– arithmetic operations (+,−, ∗, /)
– comparisons

CMPUT 204, F2010, M. Buro RAM Model and Pseudo-Code 10

Example: RAM Program that computes f (n) = nn for
n ∈ N

1. read M[0] // read number n into M[0]
2. M[1] ← M[0] // copy M[0] into M[1] (counter)
3. M[2] ← 1 // initialize M[2] with 1 (prod.)
4. if M[1] ≤ 0 goto 8 // continue at 5. if M[1] > 0
5. M[1] ← M[1] - 1 // decrement counter by 1
6. M[2] ← M[2] * M[0] // multiply product by M[0] (n)
7. goto 4 // repeat
8. write M[2] // print product
9. stop // done

This programming language resembles assembler lan-
guages used for modern CPUs such as AMD’s x86 or
Sun’s SPARC architectures. It is Too cumbersome, we
need something more high-level, with less emphasis on
irrelevant details.

CMPUT 204, F2010, M. Buro RAM Model and Pseudo-Code 11

Pseudo-code representation of above RAM program:

// input: natural number n
// output: nn

function powern(n)

counter ← n // assignment
product← 1
while counter > 0 do

counter ← counter − 1
product← product ∗ n

end

return product

This program representation is much more readable and
easier to understand.

CMPUT 204, F2010, M. Buro RAM Model and Pseudo-Code 12

Describing Algorithms with Pseudo-Code

• Supported statements:
while a < b do // while-loop, exited when cond. fails

a← a + 1 // assignment
end

for i← 1 to n do // for-loop
... // loop body executed with i = 1, 2, ..n

end // body not executed if n < 1

repeat // repeat-loop
... // loop body executed at least once

until a < b // as long as condition is false

if a > b then // if-then-else
... // executed when condition true

else // optional else-branch
... // executed when condition false

end

sort(A[1..n]) // method calls with parameters

x← max(3, 4, 5) // function calls

return // return to caller from method
return value // return to caller from function

CMPUT 204, F2010, M. Buro RAM Model and Pseudo-Code 13

• Supported types: integers and Boolean values

• Supported operations
– Integer operations + − ∗ / (rounding down)

– Integer/Boolean relations = 6= > < ≥ ≤
– Boolean connectives (AND OR NOT)

• Conventions
– syntax will not be strict as long as the meaning is clear,

e.g. the return type of functions will be implicit

– indentation reflects block structure

– // : remainder of line is a comment

– array indexing: A[i] for i-th cell of array A.

CMPUT 204, F2010, M. Buro RAM Model and Pseudo-Code 14

Another Pseudo-Code Example

// input: integer array A[0..n-1]

// output: maximum element in A[0..n-1]

function max(A[0..n− 1])
max← A[0]
for i← 1 to n− 1 do

if A[i] > max then

max← A[i]
end

end

return max

The following program is identical with the for-loop re-
placed by a while-loop:

function max(A[0..n− 1])
max← A[0]
i← 1
while i ≤ n− 1 do

if A[i] > max then

max← A[i]
end

i← i + 1
end

return max

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 15

Math and Program Correctness Proofs Review

Math Review

Here we review math concepts and notations introduced
in CMPUT 272 that we rely upon in this course:

• logic

• sets

• functions

• summation

• proof techniques

• proving program correctness

If you are unfamilar with some of the concepts make
sure you catch up right away, by consulting Wikipedia,
appendixes of algorithm textbooks, or CMPUT 272 lec-
ture notes. Also, get your algebra skills for manipulating
equations in good shape. We will need it.

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 16

Logic

Predicate: a function mapping objects to true or false.

P (n) :=“The program stops with input n”

Logical connectives: and (∧), or (∨), not (¬), im-
plies (⇒), equivalent (⇔)

(P (x) ∧ ¬Q(x))⇒ R(x)

Quantified Expressions: Expressions made of pred-
icates, logical connectives, and quantifiers (∀: for all,
∃: exists)

“for all inputs n that are natural numbers, our algorithm
halts”

written as: ∀n ∈ N H(n)

“there exists a natural number n such that n > 10”

written as: ∃n ∈ N (n > 10)

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 17

Sets: unordered collections of distinct objects

S = {s1, s2, . . .}
si are called elements of S

U = {a, b, c}, V = {a, c, d, e}, ∅ empty set

Element relation: x ∈ S indicates that x is an element
of S, x 6∈ S indicates it isn’t.

a ∈ U, c 6∈ ∅
|S|: cardinality of S = number of elements in S

|U | = 3, |V | = 4, |∅| = 0

Sequences: A = (a1, a2, . . . , an) “n-tupel”

ordered collection of items

(a1, a2) “pair”

(a, b) 6= (b, a), but {a, b} = {b, a}

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 18

Set operations

Intersection: U ∩ V = {x | x ∈ U ∧ x ∈ V } = {a, c}
“set of all x such that x is in U and in V ”

Union: U ∪V = {x | x ∈ U ∨x ∈ V } = {a, b, c, d, e}
“set of all x such that x is in U or in V ”

Difference: U\V = U − V = {x | x ∈ U ∧ x 6∈ V } =
{b}

“set of all x such that x is in U but not in V ”

Numbers

N = {0, 1, 2, . . .} : natural numbers

Z = {0, 1,−1, 2,−2, . . .} : integers

Q : rational numbers, e.g. 2
3,
−7
2

R: real numbers

R\Q = irrational numbers, can’t be expressed as inte-
ger fractions

E.g.
√
2 = 1.4142..., e = 2.718182..., π = 3.141592...

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 19

Functions

functions map elements from the domain set to unique
elements of the range set

f : Domain → Range

x 7→ f (x)

Important numerical functions mapping R to R:

powers xc, c ∈ R constant

examples: x, x2, x1/2 =
√
x

polynomials a0+a1x+a2x
2+ · · ·+anxn =

n∑

i=0

aix
i

ai ∈ R constants, ex. 1 + 2x + 4x2

exponentials cx, c ∈ R constant

2x, ex c0 = 1, c1 = c, c−1 = 1/c, cncm = cn+m

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 20

Logarithms logc x, c > 0

“logarithm to base c of x”

Definition: clogc(x) = x, ex. 2log2(x) = x

log2(1024) = 10, because 210 = 1024

log3(9) = 2, because 32 = 9

Common logarithms:

log2 ≡ log, lg

loge ≡ ln (“natural logarithm”, base e = 2.718182...)

Rules:
logc(1) = 0

logc(a · b) = logc(a) + logc(b)

logc(d
x) = x · logc(d)

loga(x) = loga(b) · logb(x)

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 21

Sums

problem: compute
1000∑

i=1

i = 1 + 2 + 3 + · · · + 1000

500 pairs: 1+1000, 2+999, 3+998, ... each worth 1001

sum = 500 · 1001 = 500500

In general for n even:
n∑

i=1

i = (n + 1) · n
2

For odd n:

Small example n = 5: 1 + 2 + 3 + 4 + 5 =
(1 + 5) + (2 + 4) + 3 (middle element 3)

n = 1001 : 500 pairs: 1 + 1001, 2 + 1000, 3 + 999, ...
+ middle element? (501)
n∑

i=1

i = (n + 1) · n− 1

2︸ ︷︷ ︸
pairs

+
n + 1

2︸ ︷︷ ︸
middle

= (n+1) · n
2
, as well

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 22

Finite summation rules

∑

i

c · ai = c
∑

i

ai

∑

i

(ai ± bi) =
∑

i

ai ±
∑

i

bi

Example: ∑

i

3(2i + i) = 3
∑

i

2i + 3
∑

i

i

Lecture 3

Application: arithmetical progression series
n∑

i=0

(a · i + b) = a

n∑

i=0

i +

n∑

i=0

b

= a

n∑

i=0

i + b(n + 1)

= a · (n + 1)
n

2
+ b(n + 1)

E.g.,
∑4
i=0(2 · i + 1) = 1 + 3 + 5 + 7 + 9 = ?

n = 4, a = 2, b = 1 25

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 23

Problem: given x and n, evaluate geometric series

1 + x + x2 + x3 + · · · + xn =

n∑

i=0

xi = ?

Example: what is 1 + 2 + 4 + 8 ? (x = 2, n = 3)

To find a closed expression, we first give the sum a
name:

(∗) S := 1 + x + x2 + x3 + · · · + xn =

n∑

i=0

xi

Multiply both sides in (∗) by x

(∗∗) S · x = x + x2 + x3 + · · · + xn+1

subtract (∗) from (∗∗) – all but two x terms cancel
each other out:

S · x− S = xn+1 − 1

⇒ S(x− 1) = xn+1 − 1

(x 6= 1)⇒ S =
xn+1 − 1

x− 1

If x = 1 then S = n + 1.

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 24

To summarize:

Theorem: For x 6= 1,
n∑

i=0

xi =
xn+1 − 1

x− 1
,

and n + 1 if x = 1

Applications:
n∑

i=0

2i = 1 + 2 + 4 + · · · + 2n

=
2n+1 − 1

2− 1
= 2n+1 − 1,

e.g.
∑3
i=0 2

i = 1 + 2 + 4 + 8 = 16− 1 = 15.

n∑

i=0

1

3i
= 1 +

1

3
+
1

9
+ · · · + 1

3n

=

1
3n+1
− 1

1
3 − 1

=
3

2
− 1

2 · 3n

This means that for increasing n the sum approaches
3/2 from below, because 1

2·3n goes to 0 for n→∞.

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 25

Common Proof Techniques

In general, a proof is a sequence of inference steps that
starts with a set of true statements such as axioms,
assumptions, and previously proven theorems to estab-
lish the truth of a new theorem. Here we review three
important proof techniques.

Direct Proofs

Direct proofs are formed by implication chains of the
form A ⇒ B ⇒ · · · ⇒ T meaning that if statement
A holds then statement T also holds (Note: in case A
is false, we can’t conclude anything about T).

Example:

Claim: The square of every even natural number is
even.

Proof: By definition we know x even ⇔ ∃k ∈ N :
x = 2 · k. E.g. 16 = 2 · 8, so 16 is even.

[Here we use the existential quantifier ∃. The righ-
hand side reads “there exists a natural number k such
that x = 2k]

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 26

Then, x even

def.⇒ ∃k ∈ N : x = 2 · k
square⇒ ∃k ∈ N : x2 = (2k)2 = 4k2 = 2(2k2)

⇒ ∃k′ ∈ N : x2 = 2 · k′ (choose k′ = 2k2 in previous
line)

def.⇒ x2 even �

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 27

Proof by Contraposition

Elementary logic tells us that (A ⇒ B) is equivalent
to (¬B ⇒ ¬A).
E.g. “It rains” ⇒ “the road is wet” is equivalent to:

“The road is not wet” ⇒ “It doesn’t rain”

Thus, rather than showing A ⇒ B ⇒ · · · ⇒ T start-
ing with a true statement A to establish the truth of
T , we can also prove it by assuming ¬T and showing
¬T ⇒ · · · ¬B ⇒ ¬A.

Proof by Contradiction

Suppose we want to show that statement T holds.

If by assuming that T is false, we arrive at a contra-
diction by following a valid implication chain, we can
conclude that T is actually true. Example:

Assume ¬T ... Therefore Q ... Therefore ¬Q. Hence,
Q∧¬Q, a contradiction. Thus, ¬T can’t be true, and
so T holds.

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 28

Example:

Claim: There are infinitely many prime numbers, i.e. nat-
ural numbers ≥ 2 that are only divisible by 1 and them-
selves (2, 3, 5, 7, 11, 13 . . .)

Proof: Assume there are only finitely many prime num-
bers, say p1, p2, . . . , pn. Let

p = p1 · p2 · · · pn + 1.

Then p is bigger than any pi. Thus, p is not a prime
number, because it is not on the list. On the other
hand, p is not divisible by any pi, because the remain-
der is always 1. Because all non-prime numbers can
be decomposed into a product of primes, either p is
a prime, or there are prime numbers which p can be
decomposed into which are not on the list. In either
case, this leads to a contradiction. Therefore, there are
infinitely many prime numbers. �

Note: For increasing n, p1p2 . . . pn+1 does not gener-
ate all prime numbers, because it doesn’t even always
produce prime numbers! Smallest counterexample:

2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 29

Mathematical Induction Proofs

The goal here is to prove that statements of the follow-
ing form hold:

∀n ∈ N : P (n) (∗)

(read “for all natural numbers n, P (n) is true.”)

Examples:

∀n ∈ N : even(n) obviously false, as 5 is not even.
This a counterexample disproving the ∀ statement.

∀n ∈ N :

n∑

i=0

2i = n(n + 1) true

One way to show statement (∗) is to prove that P (0)
holds (called the induction base (I.B.)) and then to
show that for all n : P (n) implies P (n + 1), i.e. we
prove that if the induction hypothesis (I.H.) P (n) holds,
then P (n + 1) also holds (this is called the induction
step (I.S.)). Both properties allow us to build an impli-
cation chain that proves that P (n) holds for all n:

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 30

P (0)⇒ P (1)⇒ P (2)⇒ · · · ⇒ P (n)

We know that P (0) is true, therefore P (n) holds for all
n.

A variation of this technique is to assume in the induc-
tion step that P (0), . . . , P (n) hold in order to prove
P (n + 1) also holds. Both forms of mathematical in-
duction are equivalent.

Induction Proof Example:

Claim: ∀n ∈ N :

n∑

i=0

2i = n(n + 1)

︸ ︷︷ ︸
P (n)

Proof: By mathematical induction.

Induction Base (I.B.) n = 0

0∑

i=0

i = 0 = 0(0 + 1). So, P (0) holds.

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 31

Induction Step (I.S.): from n to n + 1

Suppose P (n) holds, i.e.
∑n
i=0 2i = n(n + 1) (*)

Knowing this, we want to show that P (n + 1) also
holds, i.e.

n+1∑

i=0

2i = (n + 1)(n + 2)

(here we have replaced all occurrences of n in the def-
inition of P (n) by n + 1)

Split up the sum:
n+1∑

i=0

2i = (

n∑

i=0

2i) + 2(n + 1) and

plug in (*):

n+1∑

i=0

2i = n(n + 1) + 2(n + 1) = (n + 1)(n + 2)

Thus P (n+1) holds, and therefore P (n) is true for all
n. �

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 32

Another Example

This is an L-shaped tromino:

Question: Can chess boards of size 2n by 2n with one
square removed be tiled with L-shaped trominos for all
n ≥ 1?

8 by 8 case and tiling:

Try induction. The induction base n = 1 (2 by 2 board
with one hole) is easy: tromino + hole.

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 33

Induction step: suppose all 2n by 2n boards with one
removed square can be tiled. Show, that then also all
2n+1 by 2n+1 boards with one removed square can be
tiled with trominos.

Doesn’t seem to work because only one of the four
quadrants has one square removed, and so the induction
hypothesis can’t be applied to the other three ... but

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 34

we could remove the squares in the other three quad-
rants that are closest to the center. Then the I.H. ap-
plies to these quadrants as well, i.e. we can tile them.
What’s left is to tile the 3 squares in the middle, which
is easy.

So the induction step works, and therefore the claim is
true for all n.

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 35

Lecture 4

Proving Program Correctness

Proving the correctness of programs is essential, be-
cause without it we can’t be sure whether the program
follows the output specification for infinitely many pos-
sible inputs.

We call a program correct if and only if

• it halts on every valid input, and

• the computed result meets the program’s output
specification.

Proving correctness of programs that use loops or re-
cursion can be tricky. Here we review the Hoar logic
approach to proving the correctness of while loops by
considering pre- and post-conditions and loop invari-
ants. If you have never had to prove programs correct
before, visit the Hoar logic page on wikipedia.

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 36

Example:

// assume n > 0

// input: array of n numbers

// output: sum of all numbers

function sum(A[0..n-1])

sum <- 0

i <- 0

while i < n do

sum <- sum + A[i] // (*)

i <- i + 1

end

return sum

Step 1: The program terminates for all inputs.

We note that i is initialized with 0 and then is incre-
mented by 1 in each loop iteration. Therefore, after
exactly n iterations it will reach n and the loop ter-
minates. Therefore, the program stops for all inputs
n.

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 37

Step 2: The program computes the correct value.

We can prove this claim by finding a suitable loop in-
variant ϕ that is true before the loop body is entered
and continues to hold after the loop body has been
executed:

ϕ ≡ (sum =

i−1∑

j=0

A[j] ∧ i ≤ n)

Claim 1. ϕ holds when entering the loop body for the
first time [base case or initialization, usually easy to
check].

Claim 2. if ϕ holds upon entering the loop body, then
ϕ still holds after execution of the body. [maintenance
or induction step]

Proof of claim 1 and 2: ϕ holds prior to entering the
while-loop, because

sum =

0−1∑

j=0

A[j] = 0 and 0 ≤ n

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 38

Now suppose ϕ holds just before executing line (*):

sum =

i−1∑

j=0

A[j] ∧ i ≤ n

We also know that i < n because of the loop condition.
Let sum0 be the value of sum at this time. Then after
executing line (*)

sum = sum0 + A[i] = (

i−1∑

j=0

A[j]) + A[i] =

i∑

j=0

A[j]

Now i gets incremented. Because i < n prior to this
step, we have

sum =

i−1∑

j=0

A[j] ∧ i ≤ n,

i.e. ϕ continues to hold after executing the loop body.
�

CMPUT 204, F2010, M. Buro Math and Program Correctness Proofs Review 39

Claim 3. ϕ and the loop exit condition implies that the
correct value is computed.

Proof: when the loop exits, we know i ≥ n. Together
with ϕ this means i = n and therefore

sum =

n−1∑

j=0

A[j]

which we wanted to prove. �

