
CMPUT 204, F2010, M. Buro Contents 1

Part 5: Divide and Conquer

Contents

• Divide and Conquer Design Strategy p.2

• Binary Search p.4

• Binary Exponentiation p.9

• Fast Matrix Multiplication p.13

•Multiplying Large Integers p.23

•MergeSort p.27

• QuickSort p.37

• Bounding Sums p.45

• QuickSort Average Case Analysis p.49

• Pseudo Random Number Generators p.54

• Heaps p.57

• HeapSort p.70

• Runtime Lower Bound for Sorting p.77

[document finalized]

CMPUT 204, F2010, M. Buro Divide and Conquer 2

Divide and Conquer

The “Divide and Conquer” (D&C) design strategy for
algorithms is based on the following general plan:

CMPUT 204, F2010, M. Buro Divide and Conquer 3

1. [“Divide” Step] The problem instance is divided
into several smaller instances of the same problem,
ideally of about the same size. To obtain fast pro-
grams it is important that the size of the biggest re-
maining subproblem is only a fraction of the original
size. In selection sort for instance, the subproblem
was only one element smaller than the previous one,
leading to runtime Θ(n2) — which is SLOW.

2. [“Conquer” Step] The smaller instances are solved
(typically recursively, though sometimes a different
algorithm is employed when instances become small
enough)

3. If necessary, the solutions obtained for the smaller
instances are combined to get a solution to the orig-
inal instance.

In what follows we will see a series of classic D&C ex-
amples.

CMPUT 204, F2010, M. Buro Binary Search 4

Binary Search

Task: find index of x in array A[0..n− 1] if x is stored
in A, and −1 otherwise.

If nothing is known about A, then the worst case run-
time is Θ(n), because we have to compare x with every
key.

However, if A is sorted we can find values much faster
– in time Θ(log n).

Example: Telephone books. We want to find a phone
number for a given name x. Starting in the middle, at
any given time in the search we know in what remaining
part to continue (left or right) by comparing name x
with the first entry on the page – say. We then pick
the half-way page in the remaining part and repeat the
process, until we narrowed the search down to one page.
There we can use a similar strategy: starting in the
middle ...

CMPUT 204, F2010, M. Buro Binary Search 5

Illustration:

CMPUT 204, F2010, M. Buro Binary Search 6

Pseudo code:

// assumes n > 0

// A[0..] sorted in non-decreasing order

// returns index of x in A[l..r] if it occurs

// and -1 otherwise

function BinarySearch(A[0..], l, r, x)

if l > r then // no key

return -1 // => x not present

end

m <- l + floor((r-l)/2) // middle (*)

if x < A[m] then

return BinarySearch(A, l, m-1, x)

else if x > A[m] then

return BinarySearch(A, m+1, r, x)

else

return m // found

end

Claim: The algorithm is correct, i.e.

1. it terminates for all inputs (runtime is O(log n))

2. it computes the correct value: m ≥ 0 for an m with
A[m] = x, and −1 if x does not occur in A[l..r]

CMPUT 204, F2010, M. Buro Binary Search 7

Proof:

1: Let T (n) be number of times BinarySearch is
called for n = r− l + 1 ≥ 1 in the worst case. Then
T (n) ≤ log(n) + 2 for all n ≥ 1 and T (0) = 1.

Proof by induction on n:

Induction base n = 1: Inspecting the code
yields T (1) = 2 ≤ log(1) + 2 = 2. OK.

Induction step: suppose n ≥ 2 and T (k) ≤ log(k) + 2
for all 1 ≤ k < n. The length of the subarray pro-
cessed by the subsequent BinarySearch call depends
on whether n is even or odd:

If n is even, the parts have sizes n
2 − 1 and n

2 . Hence:

T (n) ≤ max(T (
n

2
− 1), T (

n

2
)) + 1

Using the induction hypothesis and assuming n ≥ 4:

T (n) ≤ max(log(
n

2
− 1) + 2, log(

n

2
) + 2) + 1

(log monotone)

≤ log(
n

2
) + 2 + 1 = log(n) + 2

For n = 2 the inequality also holds (using T (0) = 1).

CMPUT 204, F2010, M. Buro Binary Search 8

If n is odd, both parts have size n−1
2 and thus

T (n) = T (
n− 1

2
) + 1

(induction hypothesis)

≤ log(
n− 1

2
) + 2 + 1

(log monotone)

≤ log(
n

2
) + 2 + 1 = log(n) + 2

Therefore, for all n ≥ 1 : T (n) ≤ log(n) + 2 (and
even T (n) ≤ blog(n)c+ 2 because T (n) is an integer).
This shows that BinarySearch terminates for all n.

2: Exercise �

So, BinarySearch’s worst case runtime is O(log n).
Similarly, one can show that it also is Ω(log n).

The approach we used is called “decrease and con-
quer”, because we reduce the problem size first and
then proceed with the smaller problem instance.

CMPUT 204, F2010, M. Buro Binary Exponentiation 9

Binary Exponentiation

Lecture 13

Evaluating monomials such as xn quickly for large n is
essential for modern cryptography.

How can we do this fast?

Naive approach: xn = x · x · · ·x︸ ︷︷ ︸
n times

Number of multiplications: n− 1

This is definitely too slow for n = 2100.

But consider this: x16 = (x8)2 = ((x4)2)2 = (((x2)2)2)2

Each square operation takes just one multiplication. So,
x16 can be evaluated with 4 multiplications, rather than
15 and x1024 only requires 10 multiplications, rather
than 1023 !

Can this idea be generalized to values n that are not
powers of 2 ?

CMPUT 204, F2010, M. Buro Binary Exponentiation 10

Certainly. We note

x0 = 1 for all x, and

xn = (x
n
2)2, if n is even, and

xn = (x
n−1

2)2 · x, if n is odd.

This looks again like a “decrease and conquer” setup, in
which we solve a smaller subproblem and then construct
the full solution from that.

// computes x raised to the n-th power

// assumes n >= 0

function Power(x, n)

if n = 0 then

return 1

else if n = 1 then

return x

end

if n even then

p <- Power(x, n/2)

return p*p

else

p <- Power(x, (n-1)/2)

return p*p*x

end

CMPUT 204, F2010, M. Buro Binary Exponentiation 11

What is the runtime of Power(x, n)?

Claim: Let T (n) the number of times Power is executed
when invoked with Power(x, n).
Then T (n) ≤ log(n) + 1 for all n ≥ 1.

Proof: Induction on n.

Induction Base n = 1:

Inspect code: T (1) = 1 ≤ log(1) + 1 = 1. OK.

Induction Step:

Suppose n ≥ 2 and T (k) ≤ log(k) + 1 for all k < n.

In case n is even:

T (n) = T (n2) + 1 ≤ (log(n2) + 1) + 1 = log(n) + 1

In case n is odd:

T (n) = T (n−1
2) + 1 ≤ (log(n−1

2) + 1) + 1 ≤ log(n) + 1

Therefore, the claim is true. �

CMPUT 204, F2010, M. Buro Binary Exponentiation 12

The worst case runtime of Power(x,n) is therefore
O(log n). With a similar argument one can also show
that it is Ω(log n). Thus, the worst case runtime is
Θ(log n). This allows us to evaluate xn quickly even
for large values of n.

At the core of the Power function is a test that checks
whether n is even or odd. Modern computers repre-
sent numbers in base 2 using digits 0 and 1. In this
representation, the lowest order bit tells us whether the
number is odd (1) or even (0). Also, division by 2 fol-
lowed by rounding down is very fast: it’s just a right
shift of all digits (similar to dividing by 10 and rounding
down when using base 10, e.g. b1234/10c = 123)

Power(x,n) is not optimal in terms of executed multi-
plications. If reusing prior results is allowed, the small-
est example is n = 15:

Power(x,15): x15 = x(x(x·x2)2)2 : 6 multiplications

but also x15 = x · (x2) · ([x3]2)2 : 5 multiplications

CMPUT 204, F2010, M. Buro Fast Matrix Multiplication 13

Fast Matrix Multiplication

Matrix multiplication is a fundamental operation

All standard linear algebra operations such as

• Inverting Matrices

• Computing Determinants

• Solving Systems of Linear Equations

are of similar complexity.

How fast can we multiply matrices?

We consider matrix multiplications over rings:

CMPUT 204, F2010, M. Buro Fast Matrix Multiplication 14

Definition: (Ring)

A ring is an algebraic structure (S,+, ·, 0, 1) in which
S is a set of elements with 0, 1 ∈ S and + and · are
binary operations on S with the following properties:

• + and · are associative

• + is commutative

• · distributes over +
(a+b)·c = (a·c)+(b·c) and a·(b+c) = (a·b)+(a·c)
• 0 is the neutral element for + (a + 0 = 0 + a = a)

• 1 is the neutral element for · (a · 1 = 1 · a = a)

• For each a ∈ S there is an inverse −a ∈ S such
that a + (−a) = (−a) + a = 0

Examples: Z,Q,R are rings, N is not.

CMPUT 204, F2010, M. Buro Fast Matrix Multiplication 15

Let R = (R,+, ·, 0, 1) be a ring and Mn the set of
(n× n)–matrices over R

Mn with the following standard operations forms a ring:

•Matrix Addition A = B+C: ∀i, j : aij := bij+cij

•Matrix Multiplication A = B · C:

∀i, j : aij :=

n∑

k=1

bik · ckj

• 0 element: 0ij = 0

• 1 element: 1ij = δij
(Kronecker delta: 1 if i = j, 0 otherwise)
Matrix with ones on the main diagonal and zeros
everywhere else.

CMPUT 204, F2010, M. Buro Fast Matrix Multiplication 16

The standard method for multiplying (n×n)–matrices
requires the following operations:

n2 · (n multiplications and n− 1 additions over R)

n3 multiplications and n3 − n2 additions over R

What is the smallest number ω such that two (n×n)–
matrices can be multiplied with O(nω) operations?

Clearly w ≥ 2. Standard method shows ω ≤ 3

Breakthrough: Strassen 1969: ω ≤ 2.81

Coppersmith & Winograd 1989: ω ≤ 2.38
(impractical)

CMPUT 204, F2010, M. Buro Fast Matrix Multiplication 17

Theorem: (Strassen 1969)

The product of two (n × n)–matrices over a ring can
be computed with O(nlog 7) ring operations.

This is an improvement from Θ(n3) = Θ(nlog 8) to
O(nlog 7) ≈ O(n2.81)

We use a Lemma to prove the Theorem:

Lemma: (Winograd)

The product of two (2 × 2)–matrices over a ring can
be computed with 7 ring multiplications and 15 ring
additions/subtractions.

Remark:

Strassen presented a solution using 7/18 ring operations
which leads to the same asymptotic runtime.

Winograd also proved that 7/15 ring operations are op-
timal.

CMPUT 204, F2010, M. Buro Fast Matrix Multiplication 18

Proof of Lemma: For

(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=

(
c11 c12
c21 c22

)

cij can be computed as follows:

s1 = a21 + a22 t1 = b12 − b11
s2 = s1 − a11 t2 = b22 − t1
s3 = a11 − a21 t3 = b22 − b12
s4 = a12 − s2 t4 = b21 − t2
p1 = a11 · b11 p2 = a12 · b21
p3 = s1 · t1 p4 = s2 · t2
p5 = s3 · t3 p6 = s4 · b22
p7 = a22 · t4
c11 = p1 + p2 u2 = p1 + p4
u3 = u2 + p5 c21 = u3 + p7
c22 = u3 + p3 u6 = u2 + p3
c12 = u6 + p6

7 multiplications and 15 additions/subtractions

CMPUT 204, F2010, M. Buro Fast Matrix Multiplication 19

Example:

c21 = u3 + p7 = u2 + p3 + a22 · t4 = u2 + p5 + s1 ·
t1 + a22 · (b21 − t2)

= p1 + p4 + s3 · t3 + (a21 + a22) · (b12 − b11) + a22 ·
(b21 − b22 + t1)

= a11 · b11 + s2 · t2 + (a11− a21) · (b22− b12) + (a21 +
a22) · (b12 − b11) + a22 · (b21 − b22 + b12 − b11)

= a11 ·b11 +(s1−a11) · (b22− t1)+(a11−a21) · (b22−
b12)+(a21+a22)·(b12−b11)+a22·(b21−b22+b12−b11)

= a11 · b11 + (a21 + a22 − a11) · (b22 − b21 + b11) +
(a11 − a21) · (b22 − b12) + (a21 + a22) · (b12 − b11) +
a22 · (b21 − b22 + b12 − b11)

= a21b11 + a22b21

CMPUT 204, F2010, M. Buro Fast Matrix Multiplication 20

Proof of Theorem:

For M(n) := number of ring operations for the multi-
plication of two (n× n)–matrices we have to prove:

M(n) ∈ O(nlog 7)

First we consider n = 2k:

A =

(
A11 A12

A21 A22

)
B =

(
B11 B12

B21 B22

)
,

where Aij, Bij are (n2 × n
2)–matrices. Then

A ·B =

(
C11 C12

C21 C22

)
, with

C11 = A11B11 + A12B21,

C12 = A11B12 + A12B22,

...

CMPUT 204, F2010, M. Buro Fast Matrix Multiplication 21

which can be verified by splitting up the sums for com-
puting entries (i, j) of matrix Cab into two parts. E.g.

Cij = C11
ij =

∑n
k=1AikBkj, (1 ≤ i, j ≤ n

2)

=
∑n

2
k=1AikBkj +

∑n
2
k=1Ai,k+n

2
Bk+n

2 ,j

= (A11 ·B11)ij + (A12 ·B21)ij

Thus, C11 = A11B11 + A12B21.

Because the set of (n2 × n
2)–matrices forms a ring, the

Lemma can be applied and the Cij can be determined
with 7 multiplications and 15 additions/subtractions of
(n2 × n

2)–matrices.

Therefore:

M(n) = 7 ·M(
n

2
) + 15(

n

2
)2 (n > 1); M(1) = 1

Using the master theorem (case 1), we obtain

M(n) ∈ Θ(nlog 7)

A detailed analysis shows: M(n) = 6 · nlog 7 − 5 · n2

CMPUT 204, F2010, M. Buro Fast Matrix Multiplication 22

If n is not a power of 2 we embed the (n×n)–matrices
in (L × L)–matrices — where L = 2k is the smallest
power of 2 larger than n — and compute the product.
This technique is called “padding”. Lecture 14

Thus, 2k−1 < n < 2k = L, and therefore L < 2n.

Because M(L) ∈ O(Llog 7), we know M(L) ≤ cLlog 7

for a suitable c and large enough L.

So, with L < 2n:

M(n) = M(L) ≤ c ·Llog 7 < c · (2 ·n)log 7 ∈ O(nlog 7)
�

The lowest upper bound is still open. Strassen’sO(nlog 7)
algorithm is currently the only known method faster
than the Θ(n3) standard algorithm in practice.

CMPUT 204, F2010, M. Buro Multiplication of Large Integers 23

Multiplication of Large Integers

Suppose we are dealing with large integers that are re-
presented by thousands of bits, like so:

a =

n−1∑

i=0

ai · 2i,

where ai ∈ {0, 1} is the i-th digit in the binary repre-
sentation of a. E.g. 18 (base 10) = 10010 (base 2)

Such integers may be too big to fit into one machine
word (usually 32 or 64 bits). So we need to design an
algorithm for multiplying arbitrarily large numbers.

The straightforward “school” method for adding two n-
bit numbers takes Θ(n) steps: add corresponding pairs
of bits from right to left taking into account carries
from the previous addition).

For multiplication, the standard algorithm takes Θ(n2)
steps (add n numbers). [Demonstration on board]

Goal: time o(n2).

Suppose that I and J are the two n = 2k bit integers
to be multiplied. They can be represented as follows:

CMPUT 204, F2010, M. Buro Multiplication of Large Integers 24

I = A · 2n2 + B and J = C · 2n2 + D, where A,B,C,
and D are n

2 -bit numbers.

n/2 bits n/2 bits

I = | A | B |

J = | C | D |

Then I · J = AC · 2n + (AD + BC) · 2n2 + BD.

Multiplying by 2n and 2
n
2 takes linear time (left shift

of bit sequence), and so does adding the results, for a
total linear runtime l1(n) after the 4 multiplications:

AC, AD, BC, BD

So, the time required for multiplying I and J is:

T (n) = 4T (
n

2
) + l1(n)

Master Theorem: T (n) ∈ Θ(n2).

This it no better than the standard algorithm. The
bottleneck is too many recursive calls. So we try to
reduce the number of n2 bit multiplications.

CMPUT 204, F2010, M. Buro Multiplication of Large Integers 25

Consider:
R = (A + B)(C + D) = AC + (AD + BC) + BD

R contains all four terms for computing I · J , but we
need to separate them. Suppose we computed
P = AC and Q = BD as well. Then:

• (AD + BC) = R− P −Q
• AC = P

• BD = Q

This saves us one multiplication. Because computing
R is done by multiplying two (n2 + 1)-bit numbers, the
recurrence now is:

T (n) = T (
n

2
+ 1) + 2T (

n

2
) + l2(n)

for a suitable linear function l2. Not quite in the form
the Master Theorem covers.

To get rid of T (n2 + 1) we apply the recursion idea once
more by setting:

I ′ = A + B and J ′ = C + D

and splitting them up in n
2 -bit numbers A′, C ′ and one-

CMPUT 204, F2010, M. Buro Multiplication of Large Integers 26

bit numbers B′, D′:

I ′ = A′2 + B′ and J ′ = C ′2 + D′

Now:

I ′J ′ = (A + B)(C + D) = (A′2 + B′)(C ′2 + D′)

= A′C ′4 + (A′D′ + B′C ′)2 + B′D′

Therefore, T (n2 + 1) = T (n2) + l3(n) because any mul-
tiplication other than A′C ′ is trivial (·0 or ·1). In total:

T (n) = 3T (
n

2
) + l4(n)

(l4 linear). Using the Master Theorem and generalizing
the result to arbitrary n by a padding argument similar
to that for matrix multiplication, we can prove:

Theorem: (Karatsuba and Ofman, 1963)

Two n bit integers can be multiplied in time Θ(nlog 3),
where log 3 ≈ 1.585.

This is substantially faster than the standard Θ(n2)
time method. Even faster is the Schönhage–Strassen
algorithm: Θ(n log(n) log log(n)).

CMPUT 204, F2010, M. Buro MergeSort 27

MergeSort

Lecture 15

We are trying to speed up sorting to make it applicable
to much larger data sets. The way selection sort works
is to decrease the size of the remaining array to sort by
one at a time, always moving the minimal key to the
front.

How else could we create subarrays to be sorted and put
together the results to sort the entire array? We could
try to split the array into two equally sized subarrays —
sort those — and contruct the whole sorted sequence
by “merging” the sorted subarrays — hoping that this
can be done quickly.

CMPUT 204, F2010, M. Buro MergeSort 28

Illustration

CMPUT 204, F2010, M. Buro MergeSort 29

Merge Example:

A[] = 3 0 4 7 2 1 6 5

A1[] = 3 0 4 7 A2[] = 2 1 6 5

sort sort

A1[] = 0 3 4 7 A2[] = 1 2 5 6

merge A1[] and A2[] in non-decreasing order.

A[] = 0 [from A1]

1 [from A2]

2 [from A2]

3 [from A1]

4 [from A1]

5 [from A2]

6 [from A2]

7 [from A1]

How does merging work exactly?

We can work from left to right in both subarrays, be-
cause we know the smallest values are stored at the
front.

Which number goes first into A[]? 0, because it is
the mininum of A1[0] and A2[0]. We copy A1[0]

CMPUT 204, F2010, M. Buro MergeSort 30

(=0) to A[0] as the first key and advance i, because
we consumed the 0. Now A1[1] gets compared with
A2[0]. A2[j] is the smallest, we store it in A[], and
advance j. Etc. until we reach the end in both subarrays.

A1[] = 0 3 4 7 A2[] = 1 2 5 6

i j store A1[0] 0

i j store A2[0] 1

i j store A2[1] 2

i j store A1[1] 3

i j store A1[2] 4

i j store A2[2] 5

i j store A2[3] 6

i j store A1[3] 7

In each step either A1[i] or A2[j] is the value to be
stored next, we just have to choose the smaller one to
go first.

Pseudo code for this operation follows. We assume that
A1[] and A2[] are consecutive subarrays of the original
array A[] and that we have access to a temporary array
C[] which has the same size as A[].

CMPUT 204, F2010, M. Buro MergeSort 31

// input:

// A: array containing two adjacent sorted subsequences

// i1: index of the first key of the first subarray,

// n1 = length of first subarray

// n2 = length of second subarray

// (the second subsequence starts at i1+n1)

// C: array with the same size as A (scratch space)

//

// task:

// merge both subsequences in increasing order

//

//

// n1 = 4, n2 = 5

// first second subarray

// _____ ______

// / \ / \

// A[] = 0 3 4 7 1 2 5 6 2

// | | |

// i1 i1+n1=endi |

// i | |

// | |

// j endj = j+n2

// output:

//

// A[] = 0 1 2 3 4 5 6 7

//

// using

// C[] ? ? ? ? ? ? ? ?

//

// parts unchanged

CMPUT 204, F2010, M. Buro MergeSort 32

function Merge(A[], i1, n1, n2, C[])

i <- i1

endi <- i + n1 // first subarray: i..endi-1

j <- endi

endj <- j + n2 // second subarray: j..endj-1

k <- i // index into C[]

// as long as there are keys in both subsequences ...

while i < endi AND j < endj do

if A[i] < A[j] then // store the minimal value into C

C[k] <- A[i] ; i <- i + 1

else

C[k] <- A[j] ; j <- j + 1

end

k <- k + 1

end

// here we are done with one of the subarrays or both;

// now simply copy the remaining keys over

while i < endi do // first subarray not finished?

C[k] <- A[i] ; i <- i + 1 ; k <- k + 1

end

while j < endj do // second subarray not finished?

C[k] <- A[j] ; j <- j + 1 ; k <- k + 1

end

// copy the sorted keys from C back to A

k <- i1

while k < endj do

A[k] <- C[k] ; k <- k + 1

end

CMPUT 204, F2010, M. Buro MergeSort 33

What is the runtime of Merge?

We have 4 while loops

We count the number of loop iterations I(n1, n2). Then
the total runtime is Θ(I(n1, n2)).

In the first 3 loops each iteration either i or j is incre-
mented by one until they reach endi or endj, respec-
tively.

This means the total number of iterations there is n1

+ n2.

The last loop is executed exactly n1+n2 times.

This means I(n1, n2) = 2(n1 + n2).

This is good — asymptotically optimal in fact, because
we need to visit each of the n1+n2 keys in any case.

CMPUT 204, F2010, M. Buro MergeSort 34

Now that we know how to merge subarrays, let’s return
to sorting. We want to split the array in two parts, sort
those, and merge the resulting subarrays. For sorting
the subarrays we call our sorting function recursively.

// sort A[i..i+n-1] using C[] as scratch space

// initial call: MergeSort(A[], 0, n, C[])

// to sort A[0..n-1]

function MergeSort(A[], i, n, C[])

if n <= 1 then // (*)

return // nothing to do

end

// divide

l <- floor(n/2) // length of left half

r <- n-l // length or right half

// conquer

MergeSort(A, i, l, C) // sort left subarray

MergeSort(A, i+l, r, C) // sort right subarray

// combine

Merge(A, i, l, r, C) // merge subarrays

CMPUT 204, F2010, M. Buro MergeSort 35

Example: n = 8

3 1 8 4 7 2 5 6

divide

3 1 8 4 7 2 5 6

divide

3 1 8 4 7 2 5 6

divide

3 1 8 4 7 2 5 6

merge

1 3 4 8 2 7 5 6

merge

1 3 4 8 2 5 6 7

merge

1 2 3 4 5 6 7 8

Runtime

Let T (n) be the total number of loop iterations in func-
tion Merge plus the number of times line (*) is exe-
cuted. Then T (1) = 1 and

T (n) = T (bn
2
c) + T (dn

2
e) + 2(bn

2
c + dn

2
e) + 1

CMPUT 204, F2010, M. Buro MergeSort 36

= T (bn
2
c) + T (dn

2
e) + n + 1

Applying the Master Theorem yields T (n) = Θ(n log n).

So the total runtime of MergeSort is Θ(n log n), which
is significantly faster than SelectionSort.

Here is a table that illustrates the improvement of
MergeSort over SelectionSort in terms of key com-
parisons:

n n log n n2/2 MergeSort
speed up

1024 10240 524288 51

106 20 · 106 0.5 · 1012 25086

109 23 · 109 0.5 · 1018 21 · 106

A disadvantage of MergeSort is that it needs addi-
tional space of size n. An advantage is that MergeSort
accesses keys in succession, which makes it suitable for
sorting data stored in files.

CMPUT 204, F2010, M. Buro QuickSort 37

QuickSort

Lecture 16

The idea:

• Pick a key x

• Partition array into two subarrays that contain keys
≤ or ≥ x, respectively

• Recursively sort the subarrays

// sorts A[l]..A[r]

function QuickSort(A[l..r])

if l < r then

i <- Partition(A[l..r])

QuickSort(A[l..i-1])

QuickSort(A[i+1..r])

end

CMPUT 204, F2010, M. Buro QuickSort 38

If the following properties hold for Partition, it is
easy to show that QuickSort sorts correctly:

• Key A[i] is at its final place when A[l..r] is sorted

• A[l]..A[i-1] ≤ A[i]

• A[i+1]..A[r] ≥ A[i]

Idea for partition:

| | | | | | | | | | | | |x|

l i| |j r

| |

<= x | > x | ?

• Pick pivot key x =A[r]

• Visit all keys from left to right and maintain location
i + 1 for next key ≤ x

•When key ≤ x is found swap with location i + 1

• At end, swap key i + 1 with key r

CMPUT 204, F2010, M. Buro QuickSort 39

function Partition(A[l..r])

x <- A[r] // pivot key

i <- l-1

for j <- l to r-1 do

if A[j] <= x then // (*)

i <- i + 1

swap A[i] and A[j]

end

end

swap A[i+1] and A[r] // (**)

return i+1

2 8 7 1 3 5 6 4 at (*)

i j swap

2 8 7 1 3 5 6 4

i j no

2 8 7 1 3 5 6 4

i j no

2 8 7 1 3 5 6 4

i j swap

2 1 7 8 3 5 6 4

i j swap

2 1 3 8 7 5 6 4

i j no

2 1 3 8 7 5 6 4

i j no

2 1 3 8 7 5 6 4 done, final swap (**)

2 1 3 4 7 5 6 8

CMPUT 204, F2010, M. Buro QuickSort 40

Partition Correctness and Runtime

Loop invariant at (*):

1. If l ≤ k ≤ i, then A[k] ≤ x

2. If i + 1 ≤ k ≤ j − 1, then A[k] > x

3. If k = r, then A[k] = x

| | | | | | | | | | | | |x|

l i| |j r

| |

<= x | > x | ?

Initialization: i = l − 1 and j = l. The two ranges
in 1. and 2. are empty, so the conditions are trivially
satisfied. 3. holds because x = A[r].

Maintenance: 2 cases: if A[k] > x then only j is in-
cremented and condition 2. again holds and all entries
are unchanged. If A[k] ≤ x then A[i+ 1] and A[j] are
swapped and i and j are incremented, at which point
the L.I. again holds.

Termination: At termination, j = r. Therefore, values
are partitioned into three sets: ≤ x, > x, = x, and

CMPUT 204, F2010, M. Buro QuickSort 41

location i + 1 is valid for A[r].

Partition executes n − 1 key comparisons where n
is the number of keys (r− l + 1).

Worst Case Runtime Analysis

Theorem: In the worst case QuickSort needs Θ(n2)
comparisons for inputs of size n.

Proof: Let T (n) be the worst case number of compar-
isons for input size n

Intuition: T (n) high when partition split is uneven

CMPUT 204, F2010, M. Buro QuickSort 42

Consider sorted array A[0..n-1]: n− 1 comparisons,
then n− 2 comparisons, etc. Therefore,
T (n) ≥ (n− 1) + (n− 2) + · · ·+ 1 = (n− 1)n/2, and
T (n) ∈ Ω(n2)

CMPUT 204, F2010, M. Buro QuickSort 43

For establishing the upper bound we note

T (n) ≤ max
0≤q≤n−1

(T (q) + T (n− 1− q)) + n− 1

and T (0) = T (1) = 0. We guess T (n) ≤ c·n2 for some
c > 0 and all n ∈ N. Using the induction hypothesis
which we assume to hold for q < n for n ≥ 2 we obtain

T (n) ≤ max
0≤q≤n−1

(cq2 + c(n− 1− q)2) + n− 1

= c max
0≤q≤n−1

(q2 + (n− 1− q)2)︸ ︷︷ ︸
quadratic function in q

+ n− 1

What is the maximum value of this function?

CMPUT 204, F2010, M. Buro QuickSort 44

[Calculus: if f (x) is differentiable twice over [a, b] with
f ′′(x) ≥ 0 (which means the derivative of f is mono-
tonically increasing and f is convex) then
max
x∈[a,b]

f (x) = f (a) of f (b)]

Thus,
T (n) ≤ c(n− 1)2 + n− 1

= cn2 − 2cn + 1 + n− 1 ≤ cn2

if c = 1 and n ≥ 1. Thus, T (n) ∈ Θ(n2). �

CMPUT 204, F2010, M. Buro Bounding Sums 45

Bounding Sums Lecture 17

Before we analyse the average case runtime of Quick-
Sort, we present useful tools for bounding sums.

Calculus: if f is monotonically decreasing, then
n∑

i=m

f (i) ≥
∫ n+1

m
f (x) dx

CMPUT 204, F2010, M. Buro Bounding Sums 46

Similarly: if f is monotonically decreasing, then
n∑

i=m

f (i) ≤
∫ n

m−1
f (x) dx

Analogous bounds hold for monotonically increasing func-
tions f .

Example: We want to find tight bounds for the n-th

Harmonic Number Hn :=

n∑

i=1

1

i
.

The anti-derivative of 1
x is lnx and 1

x is monotonically
decreasing. Therefore:

n∑

i=2

1

i
≤
∫ n

1

1

x
dx = lnx |n1 = lnn

 Hn = 1 +

n∑

i=2

1

i
≤ 1 + lnn

Likewise,
n∑

i=1

1

i
≥
∫ n+1

1

1

x
dx = lnx |n+1

1 = ln(n + 1)

CMPUT 204, F2010, M. Buro Bounding Sums 47

Putting both inequalities together we get:

∀n > 0 : lnn ≤ ln(n + 1) ≤ Hn ≤ 1 + lnn

Tight approximation! Hn ≈ lnn (ratio limit 1)

Even better: limn→∞ Hn − lnn = γ =̇ 0.5772...
(Euler-Mascheroni constant)

More tools for bounding sums:

n∑

i=m

f (i) ≤ (n−m + 1) ·max{f (i) | i = m..n}

n∑

i=m

f (i) ≥ (n−m + 1) ·min{f (i) | i = m..n}

Example:
n∑

i=1

i ≤ n2

If f ≥ 0 and monotonically increasing, then
n∑

i=1

f (i) ≥
n∑

i=m

f (i) ≥ (n−m + 1) · f (m)

CMPUT 204, F2010, M. Buro Bounding Sums 48

Example 1:
n∑

i=1

i ≥
n∑

i=n
2

i ≥ (n− n

2
+ 1)

n

2
=
n2

4
+
n

2

(n even, inequality also holds for odd n, exercise)

n∑

i=1

i ∈ Θ(n2)

Example 2:
n∑

i=1

log i ≤ n log n

n∑

i=1

log i ≥
n∑

i=n
2

log i ≥ (
n

2
+ 1) log(

n

2
)

=
n

2
log(n)− (

n

2
+ 1), n even

Similar bound for n odd (exercise).

n∑

i=1

log i ∈ Θ(n log n)

CMPUT 204, F2010, M. Buro QuickSort Average Case Analysis 49

QuickSort Average Case Analysis Lecture 18

Theorem: Assuming all n keys are distinct and all n! in-
put sequences are equally probable, the average number
of key comparisons in QuickSort is ≈ 2n lnn.

Proof Sketch:

Let A(n) be the average number of key comparisons
for input size n.

Facts:
• Each key is equally likely to become the pivot key.

• After calling Partition all subsequences are equally
probable. This can be verified by counting sequences
that lead to the same subsequences.

Then A(0) = A(1) = 0, and

A(n) = n− 1 +
1

n

n∑

k=1

(A(k − 1) +A(n− k)), n ≥ 2

[add the average runtime for each of the n cases and di-
vide by n to get the average, then add n−1 Partition
key comparisons]

CMPUT 204, F2010, M. Buro QuickSort Average Case Analysis 50

Goal: transform this recurrence into form

B(n) = B(n− 1) + f (n)

which we hopefully can handle by iterated substitution.

A(n) = n− 1 +
1

n

n∑

k=1

(A(k − 1) + A(n− k))

[all A terms appear twice]

A(n) = n− 1 +
2

n

n∑

k=1

A(k − 1) | · n

nA(n) = n(n−1)+2

n∑

k=1

A(k−1) |−(n−1)A(n−1)

[get rid of sum by subtracting “(n − 1)-case” from
“n-case”, now assuming n ≥ 3]

nA(n)− (n− 1)A(n− 1)

= n(n− 1)− (n− 1)(n− 2) + 2A(n− 1)

nA(n) = (n + 1)A(n− 1) + 2n− 2 | ÷ n(n + 1)

A(n)

n + 1
=
A(n− 1)

n
+

2n− 2

n(n + 1)
=
A(n− 1)

n
+

4

n + 1
−2

n

CMPUT 204, F2010, M. Buro QuickSort Average Case Analysis 51

which has the form we aimed for. Iterating i times ...

=
A(n− i)
n− i + 1

+

i∑

j=1

4

n + 2− j −
i∑

j=1

2

n + 1− j

[base case 2 is reached for i = n− 2]

=
A(2)

3
+

n−2∑

j=1

4

n + 2− j −
n−2∑

j=1

2

n + 1− j

[A(2) = 3, denominators step from n + 1 down to 4
and from n down to 3, respectively]

= 1 +

n+1∑

k=4

4

k
−

n∑

k=3

2

k
= 1 + 4

n+1∑

k=4

1

k
− 2

n∑

k=3

1

k

= 1 + 4(Hn +
1

n + 1
−H3)− 2(Hn −H2)

= 2Hn +
4

n + 1
− C ≈ 2 lnn

In summary:
A(n)

n + 1
≈ 2 lnn

A(n) ≈ 2n lnn =̇ 1.38n log n �

CMPUT 204, F2010, M. Buro QuickSort Average Case Analysis 52

QuickSort Improvements

– There are input sequences for which QuickSort needs
quadratic runtime. However, if the input order is ran-
domized before starting QuickSort, the expected run-
time is Θ(n log n) for any fixed input with distinct keys:

Randomize(A[0..n-1])

QuickSort(A[0..n-1])

– Use InsertionSort for small subsequences:

// M = 5..25 architecture dependent

if r-l < M then

InsertionSort(A[l..r])

return

end

– reduce worst case memory overhead from Θ(n) for
call-stack to Θ(log n) by removing tail-recursion (=
function call at the end of a function) by a while loop
that calls QuickSort only once for the smaller sub-problem
in its body and instead of the second call just adjusts
l and r).

CMPUT 204, F2010, M. Buro QuickSort Average Case Analysis 53

Lecture 19

– Pick better pivot key. Best case: median. Not easy
to find (Θ(n) time, but complex and large constant).

Approximation: median-of-three key:

- sort A[l], A[m], A[r] (m = l+(r-l)/2)

- exchange A[m], A[r-1]

- call Partition(A[l+1..r-1])

This is generally faster, but Θ(n2) worst case time re-
mains.

In addition, none of the above improvements signifi-
cantly speed up truly degenerate cases such as n equal
keys.

CMPUT 204, F2010, M. Buro Pseudo Random Number Generators (PRNGs) 54

Pseudo Random Number Generators (PRNGs)

Randomness is a powerful resource!

Randomized QuickSort fast on average for any input
with distinct keys

Many other fast randomized algorithms exist.

How do we generate “random” numbers?

No such thing when using standard computer hardware.

Using programs to generate numbers may look like,
BUT ARE NOT RANDOM

Want fast algorithm that creates sequences of numbers
that pass basic statistical tests (such as having a certain
mean, variance, correlation).

Popular are Linear Congruential Generators (LCGs) of
the form:

X0 = “seed”

Xt+1 = (a ·Xt + c) mod m

for constants a, c,m. Typical m are powers of 2 be-
cause we use binary computers on which mod 2k is

CMPUT 204, F2010, M. Buro Pseudo Random Number Generators (PRNGs) 55

cheap (why?).

Examples: a = 1, c = 1,m = 232 :
X0 = 0, X1 = 1, X2 = 2, . . .

Successors are very correlated.

a = 1664525, c = 1013904223,m = 232

X0 = 0, X1 = 1013904223, X2 = 1196435762, X3 =
3519870697, ...

Beware: don’t choose constants randomly and don’t
rely on lower-order bits which might be cycling with
small period length.

For above LCG choose a, c,m as follows to achieve
maximum period length m for all seed values:

1. c and m are relatively prime, i.e. their only common
divisor is 1,

2. a− 1 is divisible by all prime factors of m,

3. a− 1 is a multiple of 4 if m is a multiple of 4.

(more about PRNGs at Wikipedia, thorough treatment:
D. Knuth: The Art of Computer Programming)

CMPUT 204, F2010, M. Buro Pseudo Random Number Generators (PRNGs) 56

Application: Randomize Array for QuickSort

// assumes random() returns uniformly distributed

// integer values in {0..RAND_MAX}

function Randomize(A[0..n-1])

for i <- n-1 downto 1

// pick index uniformly distributed in [0..i]

// Version 1:

// this code makes use of higher order bits

// by first computing a random number in [0,1).

// This avoids small period lengths

j <- floor((random()/(RAND_MAX+1.0))*(i+1))

// Version 2: faster but perhaps less random

// j <- random() % (i+1) // % = remainder

swap A[i] and A[j]

end

Exercise: prove that each resulting permutation is equally
likely

CMPUT 204, F2010, M. Buro Heaps 57

Heaps

A heap is a data structure that supports the following
set of (priority queue) operations:

• Insert(A, n, x) time O(log n)

• RemoveMax(A, n) time O(log n)

•Max(A) time O(1)

Heaps can also be used to sort n items in worst case
time O(n log n) in-place: HeapSort (Williams, Floyd
1964), as we will see later.

CMPUT 204, F2010, M. Buro Heaps 58

Graph theory terminology we need

CMPUT 204, F2010, M. Buro Heaps 59

Let U be totally ordered by ≤, i.e. ≤ is reflexive (a ≤
a), transitive (a ≤ b ∧ b ≤ c ⇒ a ≤ c), and antisym-
metric (a ≤ b ∧ b ≤ a⇒ a = b).

Definition: A heap is a binary tree with n nodes {1..n}
that

a) is constructed by removing nodes n+1, ...,m from a
complete binary tree with nodes 1, ..,m in canonical
order and

b) in which each node v has a value A[v] ∈ U that
obeys the following order constraint:

A[v] ≥ A[v′] for all v and children v′ of v

This is called the Heap Property.

The heap property ensures that the root value A[1] is
the maximum among all values in the heap. This can
be shown by induction on the depth of the tree.

If the depth of the tree is logarithmic in n, the hope is
that operations on heaps, such as removing and adding
nodes, is fast.

CMPUT 204, F2010, M. Buro Heaps 60

Example:

CMPUT 204, F2010, M. Buro Heaps 61

Heaps can be represented implicitely by array A[1 . . . n]
without the need of pointers to children like so:

• root has index 1

• left child(i) = 2i, if 2i ≤ n

• right child(i) = 2i + 1, if 2i + 1 ≤ n

• parent(i) = bi/2c for i > 1

Heap property in this representation:

A[i] ≥ A[2i] for 1 ≤ i ≤ n/2

and
A[i] ≥ A[2i + 1] for 1 ≤ i < n/2

CMPUT 204, F2010, M. Buro Heaps 62

We will discuss implementations of RemoveMax and
HeapSort

We make use of two helper functions:

Update(A, i, n) — repairs a heap in time O(log n)

BuildHeap(A, n) — creates a heap using Update in
time O(n)

CMPUT 204, F2010, M. Buro Heaps 63

Update(A, i, n)

Pre–condition: in A[i..n] the heap property holds for
all nodes except maybe for node i

Post–condition: heap property holds for all nodes in
A[i..n]

Idea: if heap property is violated, repeat exchanging
value with largest child

CMPUT 204, F2010, M. Buro Heaps 64

Lecture 20
function Update(A,i,n)

w <- A[i]

p <- i // current index, steps down tree

j <- 2 * p // left child of p

while j <= n do

if j < n and A[j] < A[j+1] then j <- j + 1 end

// j index of maximum child

if w >= A[j] then

break // heap property OK

end

// copy value to parent and step down

A[p] <- A[j]; p <- j; j <- 2 * p

end

// place w at correct position

A[p] <- w

Runtime of Update(A, i, n)

The longest j sequence consists of nodes 21i, 22i..2li
(going left all the time) where l is the smallest number
with 2li > n, in which case exactly l−1 loop iterations
take place. Going right produces larger indexes, and so
the sequences then can’t be longer.

⇒ n ≥ 2l−1i (l smallest number with 2li > n)

CMPUT 204, F2010, M. Buro Heaps 65

⇒ l ≤ blog(n/i) + 1c

⇒ Update(A, i, n) executes at most blog(n/i)c loop
iterations and at most 2 · blog(n/i)c key comparisons

Worst case runtime O(log(n/i))

CMPUT 204, F2010, M. Buro Heaps 66

BuildHeap(A, n)

How to create a heap using Update?

Idea: use small heaps to build larger ones

Start close to the leaves and repair sub-heaps for which
we know that only their roots can violate the heap prop-
erty.

By definition, single-node heaps obey the heap property.

CMPUT 204, F2010, M. Buro Heaps 67

So we can skip the last level and start with the right-
most node in the second last level counting down, re-
pairing heaps as we go up.

The rightmost node in the second last level that has a
child is the parent of node n, i.e. bn/2c.

function BuildHeap(A, n)

for i <- floor(n/2) downto 1 do

Update(A,i,n)

end // Counting down is crucial!

CMPUT 204, F2010, M. Buro Heaps 68

Worst case number of comparisons in BuildHeap(A, n):

2

bn/2c∑

i=1

blog(n/i)c ≤ 2

bn/2c∑

i=1

(log n− log i)

[log(ab) = log a + log b]

[

n∑

i=1

log i = log(

n∏

i=1

i) = log(n!)]

= 2(bn
2
c log n− log(bn

2
c!)

≤ 2(
n

2
log n− log(bn

2
c!)

[log(n!) = n log n− n log e +
1

2
log n + Θ(1)]

[log(bn
2
c!) ≈ n

2
log(

n

2
)− n

2
log e]

≈ (1 + log e)n ≈ 2.44n

Runtime proportional to number of comparisions: O(n)

CMPUT 204, F2010, M. Buro Heaps 69

The RemoveMax function overwrites the root value
with A[n], decreases n, and repairs the heap. The cur-
rent number of nodes n is passed by reference to allow
the function to change its value.

function RemoveMax(A, ref n)

if n >= 1 then

A[1] <- A[n]

n <- n-1

Update(A, 1, n)

end

Summarizing our results thus far:

Theorem:

a) BuildHeap(A, n) transforms A into a heap in time
O(n).

b) RemoveMax(A, n) runs in time O(log n)

c) Max(A) runs in time O(1) (just return A[1])

CMPUT 204, F2010, M. Buro HeapSort 70

HeapSort

Starting with a heap structure we can sort an array
by iteratively exchanging the current maximum element
(stored at the root) with the last element, and repairing
the heap with size decremented by 1.

function HeapSort(A,n)

BuildHeap(A,n)

for i <- n downto 2 do

swap A[i] and A[1]

Update(A,1,i-1)

end

The worst case loop runtime is proportional to the total
number of comparisons in Update:

≤ 2

n∑

i=2

blog(i− 1)c ≤ 2 log((n− 1)!)

≤ 2n log n− 2(log e)n + O(log n)

CMPUT 204, F2010, M. Buro HeapSort 71

The total number of comparisons is at most

2n log n− (log e− 1)n + O(log n)

For comparison: the average number of comparisons in
QuickSort is ≈ 1.38n log n

Can we improve HeapSort so that it beats QS’s average
number of comparisons?

Yes! Bottom-Up HeapSort + Improvement
(Carlsson 1987, Wegener 1993)

CMPUT 204, F2010, M. Buro HeapSort 72

Problem with Update: 2 comparisons per level.

Modify Update(A, i, n) as follows:

1. compute leaf node determined by following the great-
est child (1 comparison per level)

2. starting from the leaf find position of x = A[i]

3. move every element along the remaining path one
level up and store x at its location

CMPUT 204, F2010, M. Buro HeapSort 73

Bottom–Up HeapSort performs a linear search in 2. re-
sulting in the worst case number of comparisons of
1.5 · n log n + O(n) (analysis is tricky and based on
the fact that many elements sink in deeply)

Improvement: use binary search to determine position
of x

Problem: How? We search along a path in a heap, not
in a linear range!

CMPUT 204, F2010, M. Buro HeapSort 74

Observation:

Starting with leaf l the indexes of nodes along the path
are

l, bl/2c, bbl/2c/2c = bl/4c, . . .

Thus, the index of the k-th node up the path from l is
bl/2kc
Proof: Exercise!

Can be computed quickly. E.g. C code: l >> k

Theorem: The improved Update function requires at
most

blog(n/i)c + dlog
(
blog(n/i)c + 1

)
e

key comparisons (instead of 2blog(n/i)c). �

CMPUT 204, F2010, M. Buro HeapSort 75

With this improvement Bottom–Up HeapSort requires
at most

(1 + log e)n︸ ︷︷ ︸
BuildHeap

+

n∑

i=2

(blog(i−1)c+dlog
(
blog(i−1)c+1

)
e

≤ (1 + log e)n + n log n− (log e)n + O(log n)︸ ︷︷ ︸
already seen

+ n log log(2n) + n

≤ n log n + n log log(2n) + 2n + O(log n)

comparisons, which is optimal up to lower order terms!

Will see next: Lower bound for number of comparisons:

log n! = n log n−n log e+
1

2
log n+Θ(1) ≈ n log n−1.44n

CMPUT 204, F2010, M. Buro HeapSort 76

Other sorting algorithms that are optimal w.r.t. the
number of comparisons:

• InsertionSort using BinarySearch
(but Θ(n2) assignments in the worst case)

•MergeSort
(at most n log n assignments, but linear additional
space)

Fast implementations of QuickSort beat HeapSort on
typical inputs by a factor of 2 to 5!

But: QuickSort has quadratic runtime in the worst case,
whereas HeapSort’s O(n log n) performance is guaran-
teed.

Idea: combine both sorting algorithms! (Assignment)

CMPUT 204, F2010, M. Buro Runtime Lower Bound for Sorting 77

Runtime Lower Bound for Sorting

Here we establish a lower bound for the number of key
comparisons in sorting algorithms that are based on
comparing keys.

Given input (a1, . . . , an), we can view a particular sort-
ing process as a binary decision tree which at its leaves
tells us in which order the items would be sorted.

CMPUT 204, F2010, M. Buro Runtime Lower Bound for Sorting 78

Each permutation of {1..n} must be represented by at
least one leaf. This binary search tree must have ≥ n!
leaves, and the worst case number of comparisons is
the maximum distance of a leaf to the root (height).

Lemma:
Binary trees with height k have at most 2k leaves.

Proof: Induction on k:

CMPUT 204, F2010, M. Buro Runtime Lower Bound for Sorting 79

Corollary:
Any binary tree with n leaves has height ≥ dlog ne.
Proof: Suppose it has height h ≤ dlog ne − 1.

Then with the Lemma, the number of leaves is

≤ 2h ≤ 2dlog ne−1 < 2log n = n,

because dxe < x + 1 for all x ∈ R.

This contradicts the premise that we have n leaves. �
Lecture 21

Theorem: Any key comparison based sorting algo-
rithm requires at least dlog n!e ≈ n log n − 1.44n key
comparisons for sorting n items in the worst case.

Proof: Binary Decision Tree + Corollary

For the approximation we use an earlier result which is
based on Stirling’s formula for n!:

log n! = n log n− n log e +
1

2
log n + Θ(1)

≈ n log n− 1.44n

�

CMPUT 204, F2010, M. Buro Runtime Lower Bound for Sorting 80

Sorting Runtime Summary

Algorithm Worst Case Average Case
Key Comp. Key Comp.

InsertionSort ≈ n log n ≈ n log n (WC-time Θ(n2))

SelectionSort ≈ n2/2 ≈ n2/2
MergeSort ≈ n log n ≈ n log n

QuickSort Θ(n2) ≈ 1.38n log n
B-U HeapSort ≈ n log n ≈ n log n

So, InsertionSort, MergeSort, and B-U HeapSort are
asymptotically optimal in terms of key comparisons in
the worst case.

