
CMPUT 204, F2010, M. Buro Contents 1

Part 9: Limits of Computation

Contents

• Limits of Computation p.2

• Non-Computable Functions p.6

[document finalized]

CMPUT 204, F2010, M. Buro Limits of Computation 2

Limits of Computation

So far we haven’t spent much thought on whether cer-
tain problems can or can’t be solved by computers.

The part of computing science that deals with this ques-
tion is called Computability Theory or Recursion
Theory

This field of study originated with work of K. Gödel,
A. Church, A. Turing, S. Kleene, and E. Post in the
1930s.

CMPUT 474 covers this topic in some depth.

Another important question is what can be computed
under certain resource limitations, such as computation
time or memory constraints.

The field that studies this question is called Compu-
tational Complexity Theory, which originated in
the 1960s and 1970s with work of J. Myhill, M. Blum,
S. Cook, and R. Karp.

CMPUT 204, F2010, M. Buro Limits of Computation 3

In this course we have seen some lower bound argu-
ments which point in this direction. For instance, any
sorting algorithm based on pairwise key comparisons
has runtime Ω(n log n). Which means that we can’t
sort using key comparisons if we restrict the runtime to
O(n).

CMPUT 304 and CMPUT 474 have more to say about
this.

CMPUT 204, F2010, M. Buro Limits of Computation 4

Complexity Classes:

(what can be computed under various resource limitations?)

P: polynomial time

NP: non-deterministic polynomial time

PSPACE: polynomial space

EXPTIME: exponential time

Problems (check whether input is in one of the following sets):

CYC: graphs with cycles

SAT: satisfiable Boolean formulas (e.g. (x1 ∧ ¬x2) ∨ x3))

QBF: true quantified Boolean formulas (e.g. ∀x1∃x2(x1 ∨ x2))

CHESS: generalized chess positions won by white

CMPUT 204, F2010, M. Buro Limits of Computation 5

We know
P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

and that one of these inclusions is proper, but we don’t
know which.

Tough problem — open for almost 40 years:

P = NP ?

If so, we could solve thousands of important problems
in polynomial time, for which we currently only have
exponential time algorithms.

CMPUT 204, F2010, M. Buro Non-Computable Functions 6

Non-Computable Functions

In what follows we will first introduce word functions
and then prove that certain word functions can’t be
computed by pseudo-code programs.

Definition: An alphabet

Σ = {s1, . . . , sn}
is a finite set of symbols si that can be used to con-
struct words, which are sequences of symbols.

The length of a word is the number of symbols it con-
sists of.

For alphabet Σ, Σ∗ denotes the set of all finite words
over Σ.

The empty word is denoted ε. It has length 0, and if
we print it we don’t see anything, not even a space.

Examples:

Σ = {a, b, c, . . . , z,t} (t is the space symbol)

Words over Σ: apple this t is t an t example

CMPUT 204, F2010, M. Buro Non-Computable Functions 7

Γ = {0, 1}
Words over Γ: ε 00000 10101010

Γ∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}

Definition: Let ⊥ denote “undefined”.

For an alphabet Σ that does not contain ⊥, we call
word function

f : Σ∗→ Σ∗ ∪ {⊥}
computable iff there exists a pseudo-code program p
that for x ∈ Σ∗

• stops and returns f (x) if f (x) 6=⊥, or

• does not stop if f (x) =⊥.

Note, that this computability notion subsumes pseudo-
code programs that work only on integers, because
those, too, can be represented as 0/1-words.

CMPUT 204, F2010, M. Buro Non-Computable Functions 8

Example 1:

For Σ = {0, 1}
function double(x)
return xx // returns concatenated strings

for x ∈ {0, 1}∗ computes f (x) = xx, i.e. the input
concatenated with itself:

f (0) = 00, f (100) = 100100, f (ε) = ε

Example 2:

function forever(x)
while 0 6= 1 do

end

computes the function that is undefined everywhere,
i.e. f (x) =⊥ for all x ∈ Σ∗.

Are all word functions computable?

This may come as a surprise, but the answer is “no”
and the proof of this fact is actually quite simple, once
we understand how words and programs can be enu-
merated.

CMPUT 204, F2010, M. Buro Non-Computable Functions 9

Lecture 36 Consider alphabet Σ = {0, 1}. Words in Σ∗
can be listed in lexicographical ordering like so:

ε, 0, 1, 00, 01, 10, 11, 000, 001, . . .

i.e., by non-decreasing word length. This defines an
infinite sequence (wi) of words:

w0 = ε, w1 = 0, w2 = 1, . . .

This enumeration scheme works for any alphabet.

Thus, because pseudo-code programs are just words
over an alphabet that contains

t a b . . . z A B . . . Z 0 . . . 9 = < > +− ∗ () . . .

we can enumerate programs

p0, p1, p2, . . .

where we only list words that are syntactically correct
programs, e.g.

A(∗
is certainly not a pseudo-code program — so it doesn’t
appear in the list — but

functiontf(x)treturntx

is a program, say p42 in our list.

CMPUT 204, F2010, M. Buro Non-Computable Functions 10

Theorem: There exists a non-computable function.

Proof: Suppose Σ = {0, 1} is used for program inputs
and outputs.

Consider function d : Σ∗→ Σ∗ with

d(wi) =

{
1, pi(wi) 6= 1
0, otherwise

Here, pi(x) denotes the value computed by program pi
on input x.

Assume for the purpose of a contradiction, that d is
computable. This means that there is a program pj
that computes d.

CMPUT 204, F2010, M. Buro Non-Computable Functions 11

What happens if we use wj as input for pj?

From the fact that pj computes d (∗) and the definition
of d (∗∗) we get:

pj(wj) = 1
(∗)⇔ d(wj) = 1

(∗∗)⇔ pj(wj) 6= 1

This is a contradiction. So, there can’t be any program
that computes d. �
The proof technique we used here is called “diagonal-
ization”. It goes back to G. Cantor who proved in 1874
that there are uncountable sets and as a corollary, that
there are more real numbers than natural numbers.

The original diagonalization idea works as follows:

Suppose the set of infinite sequences of digits 0..9 is
countable, i.e. there is an infinite sequence (si)

∞
i=0 that

contains all such sequences: Say

CMPUT 204, F2010, M. Buro Non-Computable Functions 12

s0 = (0, 1, 2, 0, 9, 1, 3, . . .)

s1 = (2, 4, 9, 0, 1, 3, 5, . . .)

s2 = (7, 6, 9, 1, 5, 5, 5, . . .)

s3 = (1, 0, 0, 7, 0, 0, 0, . . .)

. . .

To construct an infinite sequence that is not on the list,
change the main diagonal elements (si)i, say by adding
1 and wrapping around to 0 when 10 is reached:

s̃0 = (1, 1, 2, 0, 9, 1, 3, . . .)

s̃1 = (2, 5, 9, 0, 1, 3, 5, . . .)

s̃2 = (7, 6, 0, 1, 5, 5, 5, . . .)

s̃3 = (1, 0, 0, 8, 0, 0, 0, . . .)

. . .

Now consider the sequence

s̃ = ((s̃0)0, (s̃1)1, (s̃2)2, . . .) = (1, 5, 0, 8, . . .)

It is clear that s̃ is not equal to any si because it differs
from it at entry i.

Therefore, there is no list of infinite sequences that con-
tains all infinite sequences.

CMPUT 204, F2010, M. Buro Non-Computable Functions 13

In the context of functions and programs the diagonal-
ization proof establishes that there are more functions
than programs.

Function d we used in the proof is quite artificial.

Next we will see two more natural examples which are
relevant to program verification, i.e. checking whether a
program is correct, for which we have to show that the
program terminates and when it does, produces correct
results.

We will see that the termination question corresponds
to a non-computable function, which means that pro-
gram verification can’t be automated.

Again, suppose Σ = {0, 1} and consider function
h′ : Σ∗→ {0, 1} defined by

h′(wi) =

{
1, pi halts on wi
0, otherwise

CMPUT 204, F2010, M. Buro Non-Computable Functions 14

Theorem: h′ is not computable.

Proof: Suppose program pj computes h′.

Then create a new program p from pj in which each
statement of the form return y is replaced by

while y 6= 0 do

end

return 0

Let the resulting program be pk.

Then with these modifications (∗) and the definition of
h′ (∗∗):

pk halts on wk
(∗)⇔

pj on wk computes 0
(∗∗)⇔

pk does not halt on wk

which is a contradiction. �
Again, the proof is based on diagonalization. Here we
change the “diagonal element” by a program modi-
fication which turns stopping with result 1 into non-
termination.

CMPUT 204, F2010, M. Buro Non-Computable Functions 15

Function h′ is more related to the program verification
task than d, but still too specialized.

The next theorem will address the general halting prob-
lem:

Theorem: The following function h is not computable:
h : {0, 1,#}∗→ {0, 1} given by

h(wi#x) =

{
1, pi halts on input x
0, otherwise

where wi, x ∈ {0, 1}∗, and h(x) =⊥ if x does not
contain exactly one # symbol, which acts as a delimiter.

Proof: We present a proof based on reduction:

We show: if h is computable, then we can use a pro-
gram that computes h as a blackbox to compute h′.

This contradicts the previous result. Thus, h is not
computable.

CMPUT 204, F2010, M. Buro Non-Computable Functions 16

Suppose h is computable by program p which w.l.o.g.
does not call itself. Construct a new program p′ from
p like so:

function p′(x)
x← x#x
p without ‘‘function p(x)’’ line

Then:

p′(wi) = 1 ⇔
p(wi#wi) = 1 ⇔
pi halts on wi ⇔
h′(wi) = 1

which proves that h′ is computable — a contradiction.
�

So, in general, we can’t tell whether a program given
by its index halts when run on a particular input. Of
course, that doesn’t preclude the possibility of proving
termination in specific cases. It just means there is
no program that can answer the halting question for
arbitrary (program index, input) pairs.

CMPUT 204, F2010, M. Buro Non-Computable Functions 17

An even more general result was proved by H.G. Rice
in 1953:

“All non-trivial semantic program properties are unde-
cidable.”

(semantic means “related to the function the program
computes”, and a set A is called decidable iff its char-
acteristic function

χA(x) =

{
1, x ∈ A
0, x 6∈ A

is computable) In detail:

Theorem: Let R be the set of computable functions
and S ⊆ R (“semantic property”), with S 6= ∅ and
S 6= R (i.e. S is non-trivial).

Then the following set is undecidable:

{wi | pi computes a function in S}

Examples of non-decidable program properties:

• Does p compute a constant function?

• Does p compute a total function (defined on every input)?

• Is p(0) = 0?

CMPUT 204, F2010, M. Buro Non-Computable Functions 18

Final Exam:

Dec. 15 2pm in CSC B2

2 hours, closed book

Format similar to term exams

Everything is relevant: all lecture notes, assignments,
seminars

Study assignment and seminar solutions

There will be problem-solving questions

Monday, Dec. 13 Office Hour @ 2pm

Good luck!

FIN

