
CMPUT 201, W2014, M. Buro Contents 1

Part 3: C/C++ Basics Continued

Contents [DOCUMENT FINALIZED]

• C Structures p.3

• Structures and Functions p.7

• Structure Memory Layout p.9

• sizeof Operator p.13

• Arrays p.14

• Programming with Arrays p.20

• Pointers p.24

• Pointers and Arrays p.27

• Pointers vs. References p.33

• C Input p.34

• C-Strings p.39

• C-String Pitfalls p.41

• C-String Library Functions p.42

• C-String Output p.48

• C-String Input p.49

CMPUT 201, W2014, M. Buro Contents 2

• Command Line Parameters p.51

• typedef p.53

• Dynamic Memory Allocation in C++ p.55

• Dynamic Arrays p.59

• Dynamic Memory Allocation in C p.62

C++ : feature available in C++ but not in C

CMPUT 201, W2014, M. Buro C Structures 3

C Structures

Week 4

struct Point { // a point consists of

int x, y; // two int coordinates

}; // ; required

// In C++ you can omit struct when

// defining variables, it is redundant.

// Such redundancies will be highlighted:

struct Point p; // define a point

p.x = 10; // set x component of p to 10

p.y = 20; // set y component of p to 20

• structure variables are collections of variables,
grouped together under a single name

• structs help organize data

• Java classes are similar

CMPUT 201, W2014, M. Buro C Structures 4

Structure Definition

struct PersonInfo {

int height;

int weight;

Date birthday;

};

struct PersonInfo x;

x.height = 180;

x.weight = 80;

x.birthday.year = 1965;

x.birthday.month = 4;

x.birthday.day = 5;

• Data components are accessed by the . operator

• Structure components are laid out sequentially in
memory

• Recursive structure definitions are not allowed, i.e.,
structure Foo can’t have a component of type Foo.

CMPUT 201, W2014, M. Buro C Structures 5

Structure Initialization

struct Date {

int year;

int month;

int day;

};

struct Date date = { 1965, 4, 5 };

• Structure components are not initialized by default!

• To initialize on the spot add

= { <exp>, <exp>, ... <exp> }

where <exp> is an expression.

• Data members are initialized corresponding to their
order in definition

• If fewer expressions are listed than there are vari-
ables, the remaining components are set to 0

Quick initialization of all components with 0:

Date date = { 0 };

CMPUT 201, W2014, M. Buro C Structures 6

Structure Assignment

struct Point { int x, y; };

struct Point p1, p2;

p1 = p2;

// same as p1.x = p2.x; p1.y = p2.y;

• Structure variables can occur on the left hand side
of assignments

• Type of the right hand side expression must match

• All structure components are copied one by one

• In C, structures can’t be compared, i.e.

if (p1 < p2) { ... }

is illegal in C

However, in C++ operators can be overloaded so
that they work with structs and code like above
works. Search for operator overloading in C++ to
learn more. We will not cover this topic in this
course.

CMPUT 201, W2014, M. Buro Structures and Functions 7

Structures and Functions

struct Point { int x, y; };

struct Point times2(struct Point p)

{

p.x *= 2; // doubling local variable p

p.y *= 2;

return p; // return local variable to caller

}

struct Point p, q;

// pass p by value and store result in q

q = times2(p);

// copying can be costly if structures are big

// faster C++ code using reference

void times2(Point & p)

{

p.x *= 2;

p.y *= 2;

}

Point p;

times2(p); // p is doubled, no copying

CMPUT 201, W2014, M. Buro Structures and Functions 8

Structures and Functions (Continued)

• Structures can be passed to functions by value or by
reference

• Passing by reference is faster because nothing has
to be copied

• Returning structures is allowed.

• Difference to Java: structures in C are stored on the
stack unless dynamically allocated from heap mem-
ory. We will soon see how this works.

CMPUT 201, W2014, M. Buro Structure Memory Layout 9

Structure Memory Layout

struct Foo {

char a; int b; char c;

} x;

How x is stored in memory:

x.a 1 byte

x.b 4 bytes

x.c 1 byte

total 6 bytes

struct Bar {

char a; char c; int b;

} y;

How y is stored in mem.:

y.a 1 byte

y.b 1 byte

y.c 4 bytes

total 6 bytes

• In general, structure components are stored in con-
secutive memory locations.

• However, the exact memory layout and size of struc-
tures depend on compiler and machine architecture.
“Holes” may be introduced to trade space for access
speed ...

CMPUT 201, W2014, M. Buro Structure Memory Layout 10

Structure Memory Layout (Continued)

struct Foo {

char a; int b; char c;

} x;

How x is really stored

in memory:

x.a 1 byte

unused 3 bytes

x.b 4 bytes

x.c 1 byte

unused 3 bytes total 12

struct Bar {

char a; char c; int b;

} y;

How y is really stored

in memory:

y.a 1 byte

y.b 1 byte

unused 2 bytes

y.c 4 bytes total 8

For instance, in g++ under Linux for Intel/AMD x86
CPUs:

• ints are aligned to addresses divisible by 4

• shorts are aligned to addresses divisible by 2

CMPUT 201, W2014, M. Buro Structure Memory Layout 11

Structure Memory Layout (Continued)

Physical memory organization: 4-byte words

0 1 2 3 int stored at 0..3: 1 access

4 5 6 7 int stored at 5..8: 2 accesses!

8 9 10 11

12 13 14 15 = word

...

• Accessing aligned ints is faster than unaligned ints

• Reason: memory is organized as a sequence of words
which usually contain 4, 8, or even 16 bytes, and the
CPU reads and stores that number of bytes whenever
it accesses memory.
– aligned int: just one memory access

– unaligned int: two accesses

CMPUT 201, W2014, M. Buro Structure Memory Layout 12

Packed Structures in gcc/g++

struct Foo {

char a; int b; char c;

} x;

How x is stored in memory:

x.a 1 byte

unused 3 bytes

x.b 4 bytes

x.c 1 byte

unused 3 bytes total 12

struct

__attribute__((packed)) Foo

{

char a; int b; char c;

} x;

How x is stored now:

x.a 1 byte

x.b 4 bytes

x.c 1 byte total 6

• Save memory with __attribute__((packed))

• packed structures: smaller, but slower access

• non-standard C language extension

• Compiles only with gcc/g++

CMPUT 201, W2014, M. Buro sizeof Operator 13

sizeof Operator

struct Point { int x, y; };

sizeof(char) == 1

sizeof(int) == 4

sizeof(double) == 8

int x;

struct Point p;

printf("%d %d\n", sizeof(x), sizeof(p));

// 4 8

The sizeof operator can be applied to any type or
variable.

It returns the number of bytes a variable occupies in
memory and will become important later when we allo-
cate memory dynamically.

CMPUT 201, W2014, M. Buro Arrays 14

Arrays

int A[8]; // array A contains 8 ints

double B[100]; // array B contains 100 doubles

struct Point points[50]; // 50 points

// access elements by index, starting with 0

A[0] = 5; // store 5 in first array element

A[7] = 0; // store 0 in last array element

// initialize all values in B with 1.0

for (int i=0; i < 100; ++i) B[i] = 1.0;

Arrays group together variables of identical type

Define array containing 8 ints: int A[8];

Elements can be accessed by index: A[i] = 0;

If i equals 5, element A[5] is set to 0

CMPUT 201, W2014, M. Buro Arrays 15

Array Definition

const int N = 5;

const int M = 256;

char A[N]; // 5 characters A[0]..A[4]

int B[M]; // 256 ints B[0]..B[255]

float C[2*M]; // 512 floats C[0]..C[511]

• Syntax: <type> <ident> [<integer-expr>];

• Integer expression defines the number of objects in
the array.

• Array indexes always start with 0

• If an array contains N elements, valid indexes are
0,...,N − 1

• In C, array elements are not initialized!

CMPUT 201, W2014, M. Buro Arrays 16

Array Initializer Lists

int A[4]; // 4 integers - not initialized!

int B[4] = { 4, 3, 2, 1 }; // B[0]=4,..B[3]=1

char C[2] = { ’a’,’b’,’c’ }; // invalid! too many

char D[] = { ’a’,’b’,’c’ }; // OK, defines D[3]

int E[2] = { 1 }; // OK, E[0]=1 E[1]=0

• The list of expressions is evaluated and the results
are assigned to the array elements in turn

• If list is shorter than the array length, the rest is set
to 0

• Array size can be omitted; it is then equal to the list
length

CMPUT 201, W2014, M. Buro Arrays 17

Array Element Access

#include <assert.h> // make assert macro known

const int N = 10; // good practice to name const.

int A[N];

for (int i=1; i <= N; ++i) {

printf("%d ", A[i]);

}

// oops! this is a bug which is hard to catch!

for (int i=1; i <= N; ++i) { // still buggy!

// aborts program if i is out of range

assert(i >= 0 && i < N);

printf("%d ", A[i]);

}

• Syntax: <ident> [<integer-expression>]

• The expression is evaluated and the array element
with that index is accessed

• It is a serious logical error if a program accesses el-
ements outside the valid index range.

• The C runtime system doesn’t check index validity!

CMPUT 201, W2014, M. Buro Arrays 18

Array Memory Layout

int A[8];

x = address of first byte of A in memory

address content

x ..x+3 A[0]

x+4 ..x+7 A[1]

x+8 ..x+11 A[2]

x+12..x+15 A[3]

x+16..x+19 A[4]

x+20..x+23 A[5]

x+24..x+27 A[6]

x+28..x+31 A[7]

Elements are laid out consecutively in memory

This array occupies 8 · sizeof(int) = 32 bytes in memory

CMPUT 201, W2014, M. Buro Arrays 19

Arrays as Function Parameters

const int N = 10;

int A[N];

void sort(int A[]) // doesn’t work - no access to A’s size

{

printf("%u\n", sizeof(A)); // oops: size of pointer (4/8)

}

void sort(int A[], int size) { ... } // OK

sort(A, N); // OK

• In C, arrays are passed by reference

• Parameter syntax: <type> <ident> []

• An array parameter is a reference pointing to the
first array element. I.e., arrays are not copied into
local variables when passed to functions and changes
will be applied to the array in the caller.

• There is no size information attached to array pa-
rameters! We need to pass number of elements sep-
arately.

• Functions cannot return arrays.

CMPUT 201, W2014, M. Buro Programming with Arrays 20

Programming with Arrays

•Most computation cycles are spent on searching and
sorting

• Need to be implemented efficiently

• Details in algorithms/data structure courses such as
CMPUT 204

• Here, we only cover some basics to illustrate C/C++
programming with arrays:

– linear search

– naive sorting

CMPUT 201, W2014, M. Buro Programming with Arrays 21

Search 1

• Task: find an element in an array

• If found, return smallest index of matching elements,
otherwise return -1

// pre-condition: A has at least size elements

// post-condition: returned value is smallest

// index of e in A[0..size-1], or -1 if not found

int find(int e, const int A[], int size)

{

for (int i=0; i < size; ++i) {

if (A[i] == e) {

return i;

}

}

return -1;

}

int A[5] = { 5, 4, 3, 2, 1 };

printf("%d", find(2, A, 5)); // prints 3

const guards against accidentally changing array ele-
ments. E.g., A[0] = 0; would be illegal.

CMPUT 201, W2014, M. Buro Programming with Arrays 22

Search 2

Task: return index of maximum array element

// pre-condition: A has at least size > 0 elems.

// post-condition: returned value is the index

// of the maximum element in A[0..size-1]

int indexOfMax(const int A[], int size)

{

assert(size > 0); // check pre-condition

int max_ind = 0; // current index of max.

int max_val = A[0]; // current maximum value

for (int i=1; i < size; ++i) {

if (A[i] > max_val) {

// found a bigger element => update

max_val = A[i]; max_ind = i;

}

}

return max_ind;

}

int A[5] = { 5, 4, 3, 2, 1 };

printf("%d", indexOfMax(A, 5)); // prints 0

CMPUT 201, W2014, M. Buro Programming with Arrays 23

Sorting

Task: sort an array in non-decreasing order

Idea: find maximal element, swap it with the last ele-
ment, and apply the same algorithm to the remaining
array part. This sorting algorithm is called ”Selection
Sort”.

// pre-condition: A has at least size elements

// post-condition: A[0] <= A[1] <=...<= A[size-1]

void sort(int A[], int size)

{

for (int l=size; l > 1; --l) {

// swap max. element in A[0..l-1] with A[l-1]

swap(A[indexOfMax(A, l)], A[l-1]);

}

}

int A[5] = { 5, 4, 3, 2, 1 };

sort(A, 5);

// A now 1 2 3 4 5

CMPUT 201, W2014, M. Buro Pointers 24

Pointers

int *p; // p is a pointer to an int variable

int a;

p = &a; // the address of a is assigned to p

// p points to a now

int *q = p; // q now also points to a

• Pointers are variables that contain the address of a
variable

• A leading * in a variable definition indicates a pointer
variable; no default initialization!

• In pointer assignments the & (address) operator is
used to determine the address of an object in mem-
ory (first byte)

• 0 is a special pointer value: it can be assigned to
any pointer variable regardless of its type.

•Memory at address 0 is not part of your process
memory. Can indicate no memory, invalid pointer,
no successor, etc.

CMPUT 201, W2014, M. Buro Pointers 25

Dereferencing Pointers

int x = 1, y;

int *ip; // ip is a pointer to int, or:

// "the object ip points to is an int"

// unitialized!

ip = &x; // ip now points to x

y = *ip; // y is now 1

*ip = 0; // x is now 0

*ip += 10; // increments x by 10

• The unary operator * is used for indirection (a.k.a.
dereferencing)

•When applied to a pointer the result represents the
variable the pointer points to.

CMPUT 201, W2014, M. Buro Pointers 26

Operators & *

short x = 5;

short *ip = &x; // a pointer to x

short y = *ip + 1; // takes whatever ip points

// to (x), adds 1 and assigns

// the result (6) to y

(*ip)++; // increments what ip points to (x)

++*ip; // ditto

*ip++; // increments ip; * has no effect here

short y = *ip++; // this copies the variable ip

// points to to y, and increments ip

• Higher precedence than arithmetic operators

• Same precedence as ++ -- (rtl associativity)

• Sometimes parentheses are needed

CMPUT 201, W2014, M. Buro Pointers and Arrays 27

Pointers and Arrays

• In C there is a strong relationship between pointers
and arrays

• Any [] operation can be expressed by an equivalent
pointer expression (see below)

• The pointer version used to be faster, but is harder
to understand

•Modern compilers generate equally fast code

• Arrays are passed to functions as a pointer to the
first element ; size information is lost

CMPUT 201, W2014, M. Buro Pointers and Arrays 28

Pointers and Arrays (Continued)

• pa+C points to the C-th successor of value *pa

• pa-C points to the C-th predecessor of value *pa

• The actual address is incremented resp. decremented
by sizeof(*pa) * C

E.g. by 4*C if pa is an int pointer

• Array definitions ; constant pointers

int A[10], *pa;

pa = A; // legal

A = pa; // illegal, because type of A

// is const int *

• A[i] equivalent to *(A+i). Why?

• &A[i] equivalent to A+i. Why?

CMPUT 201, W2014, M. Buro Pointers and Arrays 29

Array Access Example

int A[4];

int *pa = A; // or = &A[0]; - both are equivalent

A[0] | A[1] | A[2] | A[3]

^ ^ ^ ^

pa pa+1 pa+2 pa+3

*pa = 1; // sets A[0] = 1

*(pa+1) = 2; // sets A[1] = 2

*(pa+2) = 3; // sets A[2] = 3

*(pa+3) = 4; // sets A[3] = 4

CMPUT 201, W2014, M. Buro Pointers and Arrays 30

Pointer Arithmetic

int n;

T *p; ...

p += n; // increments p by n*sizeof(T)

p -= n; // decrements p by n*sizeof(T)

• If p and q point to elements in the same array,
== != < > <= >= between p and q work properly

• Pointer subtraction also valid: if p and q point to
elements of the same array and p >= q, then p-q

is the number of elements from p to q exclusive.

• All other pointer operations are illegal

• The runtime system does not check whether pointers
actually point to variables of the correct type or even
at an object under your control. But it will end your
process with a “segmentation fault” if you try to
change memory cells your process doesn’t own. E.g.

int *p = 0; // address 0 never yours

*p = 5; // this kills your process

CMPUT 201, W2014, M. Buro Pointers and Arrays 31

Pointers and Structures

struct Point { int x, y; } p1, p2, *pp = &p2;

// store p1.x into the x component of

// the point pp points to (p2)

pp->x = p1.x;

// same for y

pp->y = p1.y;

(*pp).x = p1.x; // equivalent

(*pp).y = p1.y; // *pp = point pp points to

*pp = p1; // stores both x and y, same as p2 = p1

Two equivalent ways to access structure members via
pointers:

• (*p).member
• p->member

CMPUT 201, W2014, M. Buro Pointers and Arrays 32

Pointer Arrays, Pointer to Pointers

int *A[4]; // array of 4 pointers to int

int a, b, c, d;

A[0] = &a; // store addresses of a b c d in A

A[1] = &b;

A[2] = &c;

A[3] = &d;

*A[2] = 5; // same as c = 5;

*A[3] = *A[0] + *A[1] + *A[2]; // d = a + b + c;

int **p; // p is a pointer to a pointer to an int

// same as

int *p[];// p points to array of int pointers

p = A;

**p = 0; // same as a = 0;

**(p+1) = 1; // same as b = 1;

Pointers are variables themselves, thus

• they can be stored in arrays, and

• they can point to pointers, in which case we need
more than one * to access values

CMPUT 201, W2014, M. Buro Pointers vs. References 33

Pointers vs. References

struct Point { int x, y; };

// reference version C++

void foo(Point & p)

{

p.x = p.y = 0;

}

// pointer version

void bar(struct Point *p)

{

p->x = p->y = 0;

}

References are internally represented as pointers.

Both functions do the same thing and are equally fast.

Main difference: references always refer to an existing
variable, whereas pointers can point to any address in
memory (including 0, which often has a special mean-
ing, such as end-of-list).

CMPUT 201, W2014, M. Buro C Input 34

C Input

#include <stdio.h>

int c = getchar(); // read one byte from stdin

if (c == EOF) { // end of file or error?

if (feof(stdin)) {

... // end of file

} else {

... // error

}

} else {

printf("%c", c); // c valid, process it

}

To write more useful programs, we want to read data
from files, pipes, or the keyboard, i.e., from the stan-
dard input stream.

getchar is a C library function that reads one character
from standard input.

It returns a larger data type (int) because it needs to
be able to signal events such as end-of-file reached or
read error to the caller.

This is accomplished by returning special value EOF.

CMPUT 201, W2014, M. Buro C Input 35

C Input (Continued)

If a subsequent call feof(stdin) returns true, the end of
the input is reached. Otherwise, a read error occurred.

Another useful function is scanf, which reads words
from the input, converts them and stores the results in
variables whose addresses are passed as parameters.

scanf returns EOF if the end of file is reached before ei-
ther the first successful conversion or a matching failure
occurs. EOF is also returned if a read error occurred.
Otherwise, it will return the number of variables that
were successfully read (could be 0).

scanf uses format strings similar to those understood
by printf.

scanf always skips spaces, tabs, and newline charac-
ters! Thus, the indentation is irrelevant, and reading
two characters using "%c%c" would match inputs xy

and x y !

Use man getchar and man scanf to learn more. We
will cover input/output functions in more detail later.

CMPUT 201, W2014, M. Buro C Input 36

Example 1

int x, y, res = scanf("%d %d", &x, &y);

Reads two integers from standard input.

If res != 2 something is wrong (either end of input
stream reached or conversion error or read error oc-
curred)

Inputs and return values:

empty input → res = EOF

10 → res = 1

10 23 → res = 2

x → res = 0

10 x → res = 1

CMPUT 201, W2014, M. Buro C Input 37

Example 2

// read integers from standard input and sum them up

#include <stdio.h>

int main()

{

int sum = 0; // running total

int res; // scanf return value

for (;;) { // "forever"

int x;

res = scanf("%d", &x); // read integer from stdin

// store it in x

if (res != 1) {

break; // read error or EOF

}

sum += x;

}

if (res == 0 || (res == EOF && !feof(stdin))) {

printf("corrupt input\n");

return 1; // something is wrong

}

printf("%d\n", sum);

return 0; // all went well

}

CMPUT 201, W2014, M. Buro C Input 38

C Input (Continued)

Sample input and output:

file foo contains:

1 2

3 4

5

./a.out < foo

=> 15

./a.out followed by typing this on keyboard:

1

2

3.5

ctrl-d

=> corrupt input

CMPUT 201, W2014, M. Buro C-Strings 39

C-Strings

Week 5

C-strings are sequences of characters

C-string constants are double-quoted

"I am a string"

"hello world\n"

• Can contain escape sequences such as \n \a \t

• " in the text is represented by \"

• \ in the text is represented by \\

e.g. "\"quoted text\""

You have seen them before when using printf:

printf("hello world");

printf("value=%d\n", x);

CMPUT 201, W2014, M. Buro C-Strings 40

C-String Representation

char s[9] = "Hello!";

s[0] s[1] s[2] s[3] s[4] s[5] s[6] s[7] s[8]

H e l l o ! \0 both undef

char s[] = "Hello!"; // reserves enough space to

// hold Hello! + \0

-> sizeof(s) = 7

• Array of characters which contains the character se-
quence plus end-marker ’\0’ (0 byte)

• C-strings can be initialized via =

• Some operations are inefficient because like any other
array, when passed to functions as parameters the
length is lost.

• C++ comes with a more sophisticated string class.

CMPUT 201, W2014, M. Buro C-String Pitfalls 41

C-String Pitfalls

• Ensure that the char array is big enough -
must hold characters + end-marker 0

• Character with code 0 cannot be represented in a
C-string because 0 indicates end-of-string

• Assignments other than initializations are illegal

• == and other relational operators such as >= don’t
work with C-strings

This does not sound very useful.

Solution: library functions

CMPUT 201, W2014, M. Buro C-String Library Functions 42

C-String Library Functions

To make compiler aware of these functions use
#include <string.h>

int strlen(const char s[]);

• returns the number of characters in s excluding the
end-marker

void strcpy(char dst[], const char src[]);

• copies string src to dst.
(dst must be big enough! dangerous ...)

void strcat(char dst[], const char src[]);

• appends string src to dst.
(dst must be big enough! dangerous ...)

CMPUT 201, W2014, M. Buro C-String Library Functions 43

C-String Library Functions Continued

int strcmp(const char s1[], const char s2[]);

• compares strings s1 and s2

• returns 0 if and only if (iff) they are equal

• return value > 0 iff s1 > s2 (lexicographical order)

• return value < 0 iff s1 < s2

To learn more about functions in <string.h> issue

man string.h

CMPUT 201, W2014, M. Buro C-String Library Functions 44

C-String Assignment

#include <string.h>

char s1[] = "hello";

char s2[100];

s2 = s1; //illegal! arrays can’t be assigned

strcpy(s2, s1); // OK, s2 starts with hello\0

char s_too_short[2];

strcpy(s_too_short, s1);

// Undefined! Writes passed end of s_too_short

// Also known as buffer overflow error

// Can lead to all sorts of problems

CMPUT 201, W2014, M. Buro C-String Library Functions 45

C-String Comparison

char a[] = "aaa";

char b[] = "aaaa";

char c[] = "b";

char d[] = "aaa";

a == d // Probably doesn’t do what you’d

// expect. Compares the addresses of

// of a and d, not their content!

// Although in this case the content

// is identical, the result is false

// because a, d are stored in different

// memory locations.

a < b // is a located ahead of b ?

a > b // is a located after b ?

strcmp(a, a) == 0 // true, strings identical

strcmp(a, b) < 0 // true, a lex. less than b

strcmp(c, b) > 0 // true, c lex. greater than b

strlen(b) == 4 // true

CMPUT 201, W2014, M. Buro C-String Library Functions 46

strlen & strcpy Implementation

// return length of string, pointer version

int strlen(const char *s)

{

const char *p = s;

while (*p) ++p;

return p-s; // pointer arithmetic

}

// copy t to s, pointer version

void strcpy(char *dst, const char *src)

{

while (*dst++ = *src++);

}

How do these functions work?

CMPUT 201, W2014, M. Buro C-String Library Functions 47

strcat Implementation

// appends the src string to the dst string

void strcat(char dst[], const char src[])

{

strcpy(dst + strlen(dst), src);

}

How does this function work?

CMPUT 201, W2014, M. Buro C-String Output 48

C-String Output

char hw[] = "hello world";

// %s indicates string in printf

// format strings

printf("the string is %s", hw);

// prints: the string is hello world

Format string %s has many options.

Run man printf to learn more.

CMPUT 201, W2014, M. Buro C-String Input 49

C-String Input

char input[20];

int status = scanf("%19s", input);

// reads the next word into input

// (at most 19 characters)

When reading strings, scanf skips “white space” such
as space, tab, and newline characters and stores the
following word, which ends with the next white space
or when EOF is reached, into the string that is passed
as a parameter.

When providing length n after %, no more than n char-
acters are stored in the string variable, whose size has
to be at least n + 1.

Always use length restriction! Otherwise, scanf may
write what it reads passed the end of the array!

More details, including a description of the return value
of scanf, can be found with man scanf.

CMPUT 201, W2014, M. Buro C-String Input 50

Reading Entire Lines

const int N = 100; // assumes line length <= 99

char input[N];

// stores line terminated by \n or EOF into input

// (at most N-1 chars)

int result = fgets(input, N, stdin);

// result == 0 <=> EOF or read error

Safe way of reading lines from standard input.

// simple line counting

char line[100];

int count = 0;

while (fgets(line, sizeof(line), fp)) {

++count;

}

CMPUT 201, W2014, M. Buro Command Line Parameters 51

Command Line Parameters

// print all command line arguments

#include <stdio.h>

int main(int argc, char *argv[])

{

for (int i=0; i < argc; ++i) {

printf("argument %d : %s\n", i, argv[i]);

}

}

prototype: int main(int argc, char *argv[]);

• argc: number of command line arguments

• argv: array of pointers to command line args.

• argv[0]: pointer to program name string

• argv[1]: pointer to first argument string, ...

CMPUT 201, W2014, M. Buro Command Line Parameters 52

Example

./foo -o x "foo bar" ’moe and hal’

output:

argument 0 : ./foo

argument 1 : -o

argument 2 : x

argument 3 : foo bar

argument 4 : moe and hal

•When invoking a command, the shell cuts the input
line into pieces

• Uses space as delimiter (but obeys strings enclosed
in " and ’)

• Removes leading and trailing spaces for arguments
not enclosed by "’

CMPUT 201, W2014, M. Buro typedef 53

typedef

typedef signed char sint1;

typedef unsigned char uint1;

typedef signed int sint4;

typedef float real4;

typedef double real8;

sint4 i; // signed four-byte integer

uint1 c; // unsigned one-byte integer

real4 r; // float

real8 d; // double

typedef const char *ccptr;

int strlen(ccptr s) { ... }

• Type aliases are new type names for existing types

• Syntax: typedef <variable-definition>;

• Variable identifier is treated as type name

• Increases readability and portability

• Can simplify complex type expressions

CMPUT 201, W2014, M. Buro typedef 54

typedef (Continued)

Another usage of typedef is to get around C’s slightly
annoying requirement to add the redundant keyword
struct when struct variables are used.

struct Point { int x, y; };

struct Point u; // C insists, C++ doesn’t

typedef struct { int x, y; } Point;

Point v; // aha!

CMPUT 201, W2014, M. Buro Dynamic Memory Allocation in C++ 55

Dynamic Memory Allocation in C++

• Local variables and functions parameters are located
on the stack (LIFO data structure) as we have seen
before.

• Dynamic memory is allocated from a different part
of memory called heap.

• In C++ , operator new dynamically allocates memory
and operator delete releases memory when it is no
longer needed. This can be done later, even in a
different function.

• In C, functions malloc and free are used to allo-
cate and release memory.

• YOU need to decide when memory is no longer used.
The compiler doesn’t know.

• The runtime system could know, but C and C++
don’t support garbage collection (yet), unlike Java
and Python.

CMPUT 201, W2014, M. Buro Dynamic Memory Allocation in C++ 56

Operator new C++

int *p = new int; // allocates space

// for one int on the heap

// p now points to it

*p = 1; // use allocated variable: set it to 1

• Syntax: new <type>

• Allocates space for a variable of type <type> on the
heap and returns a pointer to it.

• No initialization if <type> is a C data type, such as
int or double.

• If <type> is a struct, its constructor is called that
initializes the object (we’ll come to that later).

• If no memory is available your program is terminated
(Well, this strictly isn’t the whole truth, but good
enough for our purposes in CMPUT 201).

CMPUT 201, W2014, M. Buro Dynamic Memory Allocation in C++ 57

Operator delete C++

// allocate new int variable on heap

int *p = new int;

// work with variable

*p = 0;

++(*p); ...

// free variable when it is no longer needed

delete p;

// accessing *p after deleting it is a SERIOUS

// logical error, which is hard to track.

*p = 0; // OUCH, but program may resume

// to help detecting such cases, setting p = 0

// right after delete is a good idea

delete p;

p = 0; // safeguard

*p = 0;

// this kills the process, because it tries

// to write to a memory location it doesn’t own

CMPUT 201, W2014, M. Buro Dynamic Memory Allocation in C++ 58

Operator delete C++ (Continued)

• Frees memory when it is no longer needed.

• Calls destructor for structs (later).

• Syntax: delete <pointer-to-allocated-mem>

• Good practice: set pointer to 0 after delete to pre-
vent further access of this address through this pointer.

•When designing your program make sure each heap
object has exactly one owner who is responsible for
its deletion.

• It is an error if delete is called twice on one object.

CMPUT 201, W2014, M. Buro Dynamic Arrays 59

Dynamic Arrays

// allocate array of 100 float variables

float *p = new float[100];

// initialize all values

for (int i=0; i < 100; ++i) p[i] = 0.0;

...

// free memory when array is no longer used

delete [] p;

p = 0; // safeguard

• Syntax: new <type>[<num-of-elements>]

• Allocates an array of elements of type <type>.

• Elements are not initialized for basic C types.

•When no longer used free memory with
delete [] <pointer-to-dynamic-array>

• Defining arrays as local variables in functions or as
part of structs is OK — up to certain (small) num-
ber of elements which is system dependent. Larger
arrays need to be allocated on the heap.

CMPUT 201, W2014, M. Buro Dynamic Arrays 60

new/delete Match

• new/delete come in pairs: for every new there
should be at least one delete in your program

•More specifically:

– For every new at least one corresponding delete

– For every new[] at least one corresponding
delete[]

•When mixed, like so:

int *p = new int;

delete [] p; // ERROR

the computation result is undefined.

CMPUT 201, W2014, M. Buro Dynamic Arrays 61

Speed / Memory Issues

• Allocating dynamic memory is SLOW compared to
stack-based allocation.

• The operating system has to maintain list of avail-
able memory blocks.

• If speed is important try to minimize the usage of
new/delete, e.g., by pre-allocating and reusing ar-
rays.

• new allocates more memory than you think (over-
head at least 8 bytes per call). Allocating arrays is
therefore more efficient than single variables.

CMPUT 201, W2014, M. Buro Dynamic Memory Allocation in C 62

Dynamic Memory Allocation in C

#include <stdlib.h> // makes malloc/free known

// allocate an array of 100 floats

float *p = malloc(100*sizeof(float));

if (!p) { exit(1); } // out of memory

...

// initialize array

for (int i=0; i < 100; ++i) p[i] = 0.0;

...

// free memory when array is no longer used

free(p);

p = 0; // safeguard

• There are no new/delete operators in C

• Use library function calls instead
void *malloc(size_t n); : allocates n bytes
void free(void *p); : releases memory p points to

• To allocate an array with N elements of type T,
you need to pass the size it occupies in memory to
malloc:

malloc(N * sizeof(T))

CMPUT 201, W2014, M. Buro Dynamic Memory Allocation in C 63

Dynamic Memory Allocation in C (Continued)

• malloc returns a generic pointer (void*) which in
C can be assigned to any pointer variable:

T *p = malloc(N * sizeof(T));

• If you want to use malloc in C++ programs, the
result needs to be cast to the type you want:

T *p = (T*) malloc(N * sizeof(T));

because C++ doesn’t permit assigning void* point-
ers to other pointer types.

• If enough memory was available, malloc returns a
pointer pointing to the first byte of the allocated
memory block. Otherwise, it returns 0.

•When no longer needed, memory blocks must be
returned to the operating system to avoid running
out of memory. This can be accomplished by calling

free(p);

where p points to a memory block that was allocated
by malloc.

• To learn more about malloc/free, run man malloc

CMPUT 201, W2014, M. Buro Dynamic Memory Allocation in C 64

Memory Allocation Example

C++ Version:

struct Point { int x, y; };

const int N = 1000000;

// allocate array of 1000000 points

Point *points = new Point[N];

// initialize them

for (int i=0; i < N; ++i) {

points[i].x = points[i].y = 0;

}

... do something else with points

// points no longer needed

// (note [] matching [] in new)

delete [] points;

CMPUT 201, W2014, M. Buro Dynamic Memory Allocation in C 65

Memory Allocation Example

C Version (compile with gcc -std=c99 ...)

#include <stdlib.h>

struct Point { int x, y; };

const int N = 1000000;

// allocate array of 1000000 points

struct Point *points =

malloc(N * sizeof(struct Point));

// initialize them

for (int i=0; i < N; ++i) {

points[i].x = points[i].y = 0;

}

... do something else with points

// points no longer needed

free(points);

CMPUT 201, W2014, M. Buro Dynamic Memory Allocation in C 66

Dynamic Memory Allocation in CMPUT 201

In this course we will use the C++ new/delete oper-
ators for dynamic memory allocation (after some exer-
cises practicing malloc/free).

new/delete are less error-prone and easier to under-
stand. Moreover, they call constructors and destructors
automatically, which will be discussed in the next chap-
ter.

As a consequence, all programs using dynamic memory
allocation will have to be compiled with g++.

