CMPUT 201, W2014, M. Buro Contents 1

CMPUT 201

Practical Programming Methodology

Instructor: Michael Buro

These are notes based on CMPUT 201 as it was taught
at the University of Alberta in the Winter term of 2013.
The presented material has been drawn in part from
freely available sources, such as Wikipedia and C/C++
tutorial webpages, and notes | collected during years of
C/C++ programming and teaching.

These notes go beyond the slide shows that are usually
presented in course lectures these days in an attempt to
replace costly text books, except for exercise material
which is not included. The notes might be restructured
and certainly will be improved this term.

| appreciate suggestions for improvements.

— Michael Buro, Edmonton, December 2014

CMPUT 201, W2014, M. Buro Course Contents 2

Course Contents

Part 1: Introduction, UNIX

Part 2: C/C++ Basics
Basic types, expressions, flow control, functions, pass-
ing parameters

Part 3: C/C++ Basics Continued
C-structures, arrays, pointers, references, input/out—
put, C-strings, dynamic memory allocation

Part 4: Code Modularization and Abstract Data Types

Part 5: Bits and Bytes
manipulating data at the bit level

Part 6: UNIX File /O
Part 7: Parallel Computation with POSIX Threads

Part 8: C++, the better C
Template functions, class templates, Standard Tem-
plate Library

CMPUT 201, W2014, M. Buro Course Contents 3

Part 1: Introduction, UNIX
Contents [DOCUMENT FINALIZED]
e Course Contents p.2
e General Course Information p.5
o Software Engineering Courses p.6
e CMPUT 201 Topics p.7
e How to succeed in CMPUT 2017 p.8
e How to fail/drown in CMPUT 2017 p.9
o Motivation p.10
e The UNIX Operating System, Shell, Editor p.18
o Getting Started p.20
e Command Shell p.21
e UNIX File System p.22
e Launching Programs p.24
o Wildcards p.25
e Hidden Files p.26

e Filename Completion p.27

CMPUT 201, W2014, M. Buro Course Contents 4

e Input/Output Redirection p.28
e Pipes p.29

o Edit Textfiles p.30

e First C Program p.32

CMPUT 201, W2014, M. Buro General Course Information 5

General Course Information

Week 1

e Section home page:
—www.cs.ualberta.ca/~mburo/courses/201

— news, schedule, lecture notes, and additional ma-
terial

o Except for the course newsgroup, we will not be us-
ing eclass/moodle

e My email address: mburo@ualberta.ca
o Office: ATH 337

e Office Hours: M 13:00-13:30, T 11:30-12:00, or by
appointment

e Labs start on January 13. Get a lab account from the
helpdesk (first floor CSC) BEFORE the labs start.

e |d and password for accessing the course material:
c201 bar201y

o Prerequisite: CMPUT 115 or 175 or equivalent knowl-
edge of fundamental algorithms and data structures!

CMPUT 201, W2014, M. Buro Software Engineering Courses 6

Software Engineering Courses

e 201: Small-scale programming
— learn about UNIX/C/C++ and software libraries

— get familiar with software development tools
— know what goes on “under the hood"

—design and implement interfaces and small pro-
grams

— learn to appreciate software testing, defensive pro-
gramming, and code profiling

e 301: Team work, object-oriented design
e 401: Large-scale programming
Want to learn more about C++?7 Take CMPUT 350:

Advanced Game Programming, which covers C++ in-
depth in the first half of the course.

CMPUT 201, W2014, M. Buro

CMPUT 201 Topics

1. Introduction, UNIX Tools

2. The C and C++ Programming Languages
(including debugging and profiling)

CMPUT 201 Topics 7

3. Code modularization and abstract data types
(including makefiles)

4. Bit manipulation
5. UNIX file 1/O
6. Parallel programming with POSIX threads

7. Object oriented and generic programming, C++ Stan-
dard Template Library

CMPUT 201, W2014, M. Buro How to succeed in CMPUT 2017 8

How to succeed in CMPUT 2017

e “Learning by doing”

e Don't hesitate to play around — it's hard to do any
permanent damage if you create backups or use a
version control system

e Write many small programs to test new concepts

e Learn to find answers for yourself

— manual pages, online tutorials
— online textbooks
— google compiler error messages

e Learn to use a debugger

CMPUT 201, W2014, M. Buro How to fail/drown in CMPUT 2017 9

How to fail/drown in CMPUT 2017

e Skipping lectures or labs
e |gnoring reading assignments
e Not taking advantage of asking questions in labs

e Starting with programming prior to thinking about
the problem and trying to make programs work by
applying random changes

e Wasting considerable time by not learning how to
use tools like editors, debugger, and profilers.

CMPUT 201, W2014, M. Buro Motivation 10

Motivation

Typical Personal Computer (PC) Mainboard

Slot 1 CPU socket

| Chipset (covered w heatsink)

/O Connectors

BIOS Chip
ATX Slot 1 Motherboard

Flexible design: slots for central processing unit (CPU),
memory (RAM), and expansion cards such as video or
high-end audio cards.

CMPUT 201, W2014, M. Buro Motivation 11

Schematic Design of a PC

Printer

Mouse ._L Hard disk

Keyboard - Ports Floppy disk drive
Modem ~— CD-ROM Drive
CPU a—@ Monitor

Sound
RAM] Speakers

Network
card

CPU = Central Processing Unit (“Brain of the computer”, man-
ages data flows from connected devices to and from memory)

XL

2

ROM

Bus

ROM = Read-Only Memory (doesn't lose content when power
switched off, contains start-up code)

RAM = “Random Access Memory” (misnomer: better would be
“read /write” memory, loses content when switching power off, is
filled with code/data from harddrive when booting and launching

applications)

CMPUT 201, W2014, M. Buro Motivation 12

Central Processing Unit (CPU)

CPUs nowadays contain multiple execution cores which
run programs in parallel at a speed of over a billion
machine instructions per second each.

CMPUT 201, W2014, M. Buro Motivation 13

von Neumann Computer Architecture

0
CPU ; Data

Register File(" gq
R14

[L

Program Counter PC

Memory
(sequence of bytes)

~1__ 93 LD 1,R1
1
0 ’
239 R1:=R1+1 Machine Program
92 ST R1,1 (Assembly Language)
1
Q
42 JMP 1003

235

1003

Memory is a sequence of numbers between 0 and 255
(8-bit values called "bytes”)

Each byte in memory has a unique address

Machine code and data are indistinguishable — both
are just sequences of bytes

CPUs contain registers (fast temporary memory) and
execute machine code that is pointed to by a so-called
program counter (PC), which advances after each step.

CMPUT 201, W2014, M. Buro Motivation 14

Each machine instruction by itself doesn't do much, but
execution is FAST (billions of instructions per second).

Typical machine instructions read values from mem-
ory into a register, manipulate register values using
an Arithmetic Logic Unit (ALU), store values back, or
change the PC (jump instructions).

CMPUT 201, W2014, M. Buro Motivation 15

Problems:

How to deal with a large variety of machine architec-
tures and machine codes?

We want to write programs at a more abstract level
that are easier to read.

Also, programs shall run on different machines without
changes.

CMPUT 201, W2014, M. Buro Motivation 16
Solution:
human 0101... 1011..
readable compiler machine
program |] "l program | | data

if (x>0) {

Computer T

Operating System

Results

Design operating systems that abstract hardware pe-
culiarities by means of device drivers that interact with
hardware and provide a uniform programming interface.

Write programs in high-level programming languages
that get translated into particular machine code by a
program called compiler.

So, instead of having to produce N machine code ver-
sions of our program for N different machine archi-
tectures, we only write our program once and let the
N different compilers (that somebody else wrote ©)
translate our program.

CMPUT 201, W2014, M. Buro Motivation 17

Software/Hardware Layers

CMPUT201 User Programs

CMPUT379

(Operating System

\
[Devicesj [Memor)ﬂ

In this course we take a look at the operating system
UNIX and the high-level programming languages C and
C++.

CMPUT229

Linux is a free software UNIX variant. Android is based
on Linux.

C is sometimes called the “lingua franca” of computing
science, because it is ubiquitous.

Many other high-level languages such as Perl, Python,
and Java have C interfaces, because C allows us to
create very efficient programs.

C++ is the better C. Among other things it supports
object oriented and generic programming.

CMPUT 201, W2014, M. Buro The UNIX Operating System, Shell, Editor 18

The UNIX Operating System, Shell, Editor

Why UNIX?
e Open standards (e.g. POSIX threads)
e Dominant server operating system
e Free versions available (FreeBSD, OpenBSD, Linux)

e Many free software development tools:
gcc, emacs, gprof, gdb, gawk, kdevelop, etc.

e Multi-tasking
(multiple programs can run at the same time)

e Multi-user
(multiple users can work on the same machine)

We will be using Linux in the labs.

CMPUT 201, W2014, M. Buro The UNIX Operating System, Shell, Editor 19

Linux

| highly recommend to administer your own Linux sys-
tem at home. There are many freely downloadable dis-
tributions. E.g.

e Fedora (fedoraproject.org)
Frequent updates. Up-to-date software packages.
Requires a separate partition on your harddrive.

e Fedora live CD or USB stick
(fedoraproject.org/wiki/FedoraliveCD)
Does not require any changes in your setup!
Great for checking Linux out.

You can also run Linux in a virtual machine under Win-
dows or MacOS or simply connect to a lab computer
from home using an SSH client.

See “Virtual Fedora 20 Machine” and “How to work
from home?" on page “Course Material” for details.

CMPUT 201, W2014, M. Buro Getting Started 20

Getting Started

Two ways of accessing a UNIX computer:

1. Sitting in front of it and typing in a command win-
dow

2. Connecting to it from a remote machine using ssh
(“secure shell")

ssh ugOl.cs.ualberta.ca

Both require you to provide a userid and password

In what follows | will present a UNIX refresher.

CMPUT 201, W2014, M. Buro

Command Shell

Command Shell 21

e |n interactive mode, shells are command line inter-
faces (text window with keyboard attached to it)
e.g. "xterm”

e |ssue operating system or internal shell commands
directly via keyboard input; e.g.
—Is (list directory contents) 1ls -1rt
—cd (change directory) cd workdir
—mv (move/rename) mv old-file new-file
— mkdir (create directory) mkdir AS1
—cp (copy file or directory) cp -r dir backup

—rm (remove file or directory) rm -rf dir

— cat (display file) cat text
— echo (display string) echo hello
—exit (quit shell) exit
—man (command info) man man

— apropos (keyword search) apropos root

CMPUT 201, W2014, M. Buro UNIX File System 22

UNIX File System

Data is stored in file systems which are usually located
on harddisks

Persistent: data isn't lost when computer is switched

off (unlike RAM)

e Hierarchical structure (tree)
e / represents the root directory

e Directories (“folders”) can contain other directories
and files (internal nodes)

e Files (leaves) are just sequences of bytes

e Files/directories are uniquely located by a directory
path. E.g. /home/user/AS1/foo.c

e / is also used as directory separator

CMPUT 201, W2014, M. Buro UNIX File System 23

Shell continued

e Special directories:
— / root directory, everything is stored beneath

— . current directory
cp ./foo ./bar = cp foo bar

— .. parent directory cd ../.. : 2levels up

— ~ home directory cd “/foo cd=cd”

e Command history/editing
— use arrow keys to navigate, <delete> or
<backspace> keys to remove characters

e Simple programming language
— variables, functions, command aliases
e Startup code in ~/.bashrc (when shell=bash)

— customizations!
function 11() { 1s -1 "$e"; }

CMPUT 201, W2014, M. Buro Launching Programs 24

Launching Programs

e Type program name (+ parameters) and hit the re-
turn key <ret>
1s<ret>
emacs foo.c<ret>

e Shell interprets the first word as command name and
tries to locate a function definition with this name
(see ~/.bashrc). If this fails it searches in the di-
rectories listed in variable $PATH (try echo $PATH)

e To detach a program from the terminal to run it in
background type:

command &<ret>

(= command<ret><ctrl-z>bg<ret>)

CMPUT 201, W2014, M. Buro Wildcards 25

Wildcards
* matches all strings

? matches one character

Examples:

®WC *.C
count the words in all files with names that end with
.C

e 1ls foo”bar
list all filenames that start with foo, followed by an
arbitrary character and bar

CMPUT 201, W2014, M. Buro Hidden Files 26

Hidden Files

Files with names starting with . are hidden, they are
not listed nor matched by wildcards

This is why 1s does not show . nor ..

Useful for avoiding clutter
(e.g. many resource files .*rc in 7)

1s -a reveals them

CMPUT 201, W2014, M. Buro Filename Completion 27

Filename Completion

Many shells have a filename completion feature: when
hitting the <tab> key the shell tries to complete the
filename. Saves typing!

cat super<tab>
will complete the command to
cat supercalifragilisticexpialidocious

if this is the only filename starting with super

CMPUT 201, W2014, M. Buro Input/Output Redirection 28

Input/Output Redirection

Output of programs can be stored in a file using >:

cat filel file2 > file3

[writes content of files filel and file2 to file3]
Generates error message if file3 already exists
Use >! to override

cat > foo
[copy keyboard input ended by <ctrl-d> to file foo]

Input can also be redirected:

grep foo < text
[display all lines in file text that contain foo]

Or both: sort < file > file.sorted

CMPUT 201, W2014, M. Buro Pipes 29

Pipes

Powerful UNIX feature: output of commands can be-
come input for subsequent commands

grep aaa file | wc -1

[count the number of lines in file that contain aaal

sort file | uniq | wc -1

[count the number of unique lines in file]

CMPUT 201, W2014, M. Buro Edit Textfiles 30

Edit Textfiles

e Several good editors exist: emacs, vim,
e We recommend emacs, it's powerful!

e Type emacs x <ret> to edit file x in a separate
window.

e To edit within the terminal window, launch emacs
with emacs -nw x <ret>

e Large number of commands bound to keys. E.g.
— <ctrl-x> <ctrl-s> : save buffer
— <ctrl-x> <ctrl-f>: load file
— <ctrl-x> <ctrl-c>: exit
— <ctrl-s>: search
— <alt-%> : search and replace
— <ctrl-x> 2: split window; <ctrl-x> o : switch buffer

— <alt-x> command : launch external commands such as gdb, gnus

e man emacs, emacs reference cards, emacs tutorial
(in help menu or on the web, see “Course Resources”)

e Highly customizable: emacs ~/.emacs

CMPUT 201, W2014, M. Buro Edit Textfiles 31

More Details

Lab O:

e UNIX commands

e emacs and bash customization

e editing and compiling C++ programs

CMPUT 201, W2014, M. Buro First C Program 32

First C Program

e Create file hello.c using emacs and save it

#include <stdio.h>

int main()

{
printf("hello world\n");
return 0;

3

e g++ -0 hello hello.c generates executable
hello which prints hello world in the terminal
window and positions the cursor in the following line
after being invoked with . /hello

e Without the -o hello option, g++ creates exe-
cutable file a.out. Issue man g++ explains g++
options.

e g++ is the GNU C+4+ compiler, which expects C++
programs. It also usually works with C programs, be-
cause normally C programs are also C++ programs.
gcc only compiles C programs.

