
CMPUT 201, W2014, M. Buro Contents 1

Part 8: C++, the better C

Contents [DOCUMENT NOT FINALIZED YET]

• C++ Overview p.2

• Object Oriented Programming p.4

• Operator Overloading p.10

• Generic Programming (1): Template Functions p.12

• Generic Programming (2): Class Templates p.15

• C++ Libraries p.20

• Standard Template Library Overview p.22

• Sequence Containers p.25

• Associative Containers p.33

• Wrapping Up ... p.38

Sources: Wikipedia, http://www.cplusplus.com

CMPUT 201, W2014, M. Buro C++ Overview 2

C++ Overview

Developed by Bjarne Stroustrup starting in 1979 at Bell
Labs, C++ was originally named “C with Classes”.

It added object oriented (OO) features, such as classes,
and other enhancements to the C programming lan-
guage.

The language was renamed C++ in 1983, as a pun
involving the increment operator.

First standardized in 1998, and then subsequently in
2003, 2007, and recently in 2011.

C++11 adds a multitude of features — such as lambda
expressions, move semantics, and uniform initialization
(see http://en.wikipedia.org/wiki/C++11).

Most of them are supported by g++ 4.7, and some by
g++ 4.6 (which is installed on the lab machines).

In this section we give a brief overview of C++’s main
features without going into much detail.

CMPUT 201, W2014, M. Buro C++ Overview 3

C++ Design Philosophy

In “The Design and Evolution of C++” (1994), Bjarne
Stroustrup describes some rules that he used for the
design of C++:

• C++ is designed to be a statically typed, general-purpose lan-
guage that is as efficient and portable as C.

• C++ is designed to directly and comprehensively support mul-
tiple programming styles (procedural programming, data ab-
straction, object oriented programming, and generic program-
ming).

• C++ is designed to give the programmer choice, even if this
makes it possible for the programmer to choose incorrectly.

• C++ is designed to be compatible with C as much as possible,
therefore providing a smooth transition from C.

• C++ avoids features that are platform specific or not general
purpose.

• C++ does not incur overhead for features that are not used
(the “zero-overhead principle”).

• C++ is designed to function without a sophisticated program-
ming environment.

CMPUT 201, W2014, M. Buro Object Oriented Programming 4

Object Oriented Programming

C++ supports the following object oriented program-
ming paradigms:

• Encapsulation

• Inheritance

• Polymorphism

which can improve the design, structure, and re-usability
of code. In C++, objects are values of a class type.
As we have seen earlier, C++ classes consist of data
members and member functions that act on the data,
including constructors and a destructor which are au-
tomatically called when class objects are created or de-
stroyed, respectively.

Encapsulation is the concept of bundling data with meth-
ods operating on that data and restricting access to
some of the object’s components. This prevents unau-
thorized parties from directly accessing data, and allows
us to change implementation details without requiring
application code adjustments.



CMPUT 201, W2014, M. Buro Object Oriented Programming 5

Encapsulation Example

class Rectangle

{

public:

int x, y, width, height;

};

Rectangle r;

printf("%d", r.width); // works, but discouraged

r.height = 5; // direct access could corrupt object state

class Rectangle2

{

private:

// hide implementation details

int x, y, w, h;

public:

// public interface

void set_x(int v) { x = v; }

int get_x() const { return x; }

...

};

Rectangle2 r2;

r2.set_y(5); // preferred

int w = r2.get_width();

// Implementation of get_width can be changed

// without users having to adjust their code!

// E.g. int get_width() const { return x1-x0; }

CMPUT 201, W2014, M. Buro Object Oriented Programming 6

Inheritance

In object oriented programming, inheritance is a way to
establish an “is-a” relationship between objects.

It is often confused as a way to reuse existing code
which is not a good practice because inheritance leads
to tight code coupling.

Rather, re-usability of code is achieved through compo-
sition, in which new objects contain sub-objects whose
member functions are re-used.

In classical inheritance which defines objects by classes,
classes can inherit attributes and behavior from pre-
existing classes called base classes, super-classes, or
parent classes.

The resulting classes are known as derived classes, sub-
classes, or child classes.

Derived classes are more specialized than base classes.
Often, data and function members are added. A typical
example is a collection of shape types in a graphics
library (Square, Triangle, Circle, etc.) that all derive
from a common base class Shape.

CMPUT 201, W2014, M. Buro Object Oriented Programming 7

Inheritance Example

struct Shape

{

private:

Color color;

Point location;

public:

void draw() { printf("undefined"); exit(10); }

void set_color(Color c) { color = c; }

};

// Circle is a sub-class of Shape.

// Circle inherits all Shape members,

// adds radius, and overrides Shape’s draw function.

// Shape is the base class or super-class of Circle

// Meaning: "Circle is-a Shape"

struct Circle : public Shape

{

private:

int radius;

public:

void draw() { // draw circle ...

}

};

Circle c; // has color, location, radius, draw, set_color

c.set_color(0); // calls Shape::set_color

c.draw(); // calls Circle::draw

CMPUT 201, W2014, M. Buro Object Oriented Programming 8

In C++, class member functions can be declared
virtual, which makes them polymorphic.

This means that values of different data types can be
handled using a uniform interface. Example:

class B // base class

{

virtual void foo() { printf("B"); }

};

class X : public B // X is a B

{

virtual void foo() { printf("X"); }

};

class Y : public B // Y is a B

{

virtual void foo() { printf("Y"); }

};

X *px = new X; px->foo(); // prints X

Y *py = new Y; py->foo(); // prints Y

B *pb = px; // works, because X is a B

pb->foo(); // prints X

pb = py; // works, because Y is a B

pb->foo(); // prints Y

// polymorphism at work: same invocation syntax, different

// results. The runtime system knows the type of *pb ...



CMPUT 201, W2014, M. Buro Object Oriented Programming 9

Polymorphism is very useful. In a graphics library, for
instance, one could store pointers to all shape objects
in an array and call the virtual draw function on each
object to draw all shapes like so:

Shape *objects[N];

objects[0] = new Circle;

objects[1] = new Rectangle;

...

for (int i=0; i < N; i++) {

objects[i]->draw();

}

Each sub-class of Shape implements its own draw func-
tion, and C++’s polymorphism mechanism ensures that
the right functions are called. I.e., Circle::draw for cir-
cles and Rectangle::draw for rectangles, etc. Elegant,
indeed!

The only requirement for this code (which may be stored
in a pre-compiled library) to work with new user-defined
shape types is that they are derived from Shape.

Unlike Java, polymorphism is optional in C++, because
it incurs runtime cost (a pointer is added to each object,
and virtual function dispatch takes longer).

CMPUT 201, W2014, M. Buro Operator Overloading 10

Operator Overloading

C++ allows programmers to use operators in new con-
texts:

Matrix A, B, C;

C = A + B * B; // matrix operations!

Complex a, b, c;

c = a + b * b; // complex number arithmetic!

Rational u, v, w;

w = u + v * v; // rational arithmetic!

ofstream os; // output stream

ifstream is; // input stream

os << "foo"; // write to output stream

is >> x; // read from input stream

This is a useful feature. For instance, one could take
a numerical algorithms library that works with double
floating point numbers, replace all instances of double
by Number, and then use typedef Rational Number;

to let the library work with exact rational numbers in-
stead of floating point values that are plagued by round-
ing errors. THIS IS COOL!

CMPUT 201, W2014, M. Buro Operator Overloading 11

All operators can be redefined in the context of new
types.

This includes assignment operators and binary relations
such as == and <.

Example:

struct Point {

int x, y;

void operator=(const Point &u) // assignment

{

x = u.x; y = u.y; // copy all components

}

};

// returns true iff point a is lexicographically

// smaller than point b

bool operator<(const Point &a, const Point &b)

{

if (a.x < b.x) return true;

return a.x == b.x && a.y < b.y;

}

Point a, b;

a = b; // invokes assignment operator

if (a < b) // invokes less-than operator

CMPUT 201, W2014, M. Buro Generic Programming (1): Template Functions 12

Generic Programming (1): Template Functions

Consider the following code:

int max(int x, int y) {

return x > y ? x : y;

}

char max(char x, char y) {

return x > y ? x : y;

}

double max(double x, double y) {

return x > y ? x : y;

}

Do we really have to go on and provide identical im-
plementations for all types we want to compute the
maximum value for? Looks silly. The compiler should
do the work for us. It does — when using template
functions:

template <typename T> T max(T x, T y) {

return x > y ? x : y;

}



CMPUT 201, W2014, M. Buro Generic Programming (1): Template Functions 13

T is a type parameter, which when calling max is bound
to the actual type we are using.

After deducing type T by matching the actual function
argument type, the compiler compiles template function
max for that specific type and emits code that calls the
specific function.

Example:

float x, y;

float m = max(x, y); // compiler generates call

// to float max(float x, float y);

Point p, q;

Point r = max(p, q); // compiler generates call

// to Point max(Point x, Point y);

typedef const char *ccptr;

ccptr s = "foo", t = "bar";

ccptr u = max(s, t); // compiler generates call

// to ccptr max(ccptr x, ccptr y);

The only requirement on type T is that it supports >.

What if it doesn’t? In this case you’ll see a compiler
error message.

CMPUT 201, W2014, M. Buro Generic Programming (1): Template Functions 14

In such a scenario, one could either implement the >

operator for the type in question, or provide an explicit
function definition.

If such an explicit definition exists, the compiler will
choose it over any matching template function.

template <typename T> T max(T x, T y) {

return x > y ? x : y;

}

// assuming type Foo doesn’t support >

Foo max(Foo x, Foo y)

{

return is_greater_than(x, y) ? x : y;

}

Foo x, y;

x = max(x, y); // calls Foo max function, rather

// than template function max

Exercise: use this function preference rule to fix max

for C-strings on the previous page, which doesn’t work
as intended.

CMPUT 201, W2014, M. Buro Generic Programming (2): Class Templates 15

Generic Programming (2): Class Templates

The idea of parameterizing types is also very useful for
classes.

For instance, consider container types such as vectors,
lists, stacks, and queues, whose implementation doesn’t
depend on the type of elements we store.

In C, you would have to either duplicate code (list of
integers, list of points, list of foos, etc.) or create a
type-unsafe generic version using void* pointers, sim-
ilar to qsort we have seen in the labs.

C++’s class templates are much more elegant and type-
safe.

The way you create class templates for container classes
is straight-forward:

• Start with an implementation that stores ints, say.

• Then, whenever you refer to the element type, re-
place int by type variable T, say.

• Finally, add template <typename T> in front of
your class definition.

CMPUT 201, W2014, M. Buro Generic Programming (2): Class Templates 16

Example: Queue Class Template

template <typename T> class Queue

{

public:

// initializes empty queue with maximal c elements

Queue(int c) {

capacity = c;

data = new T[capacity];

reset();

}

~Queue() { delete [] data; }

// empties queue

void reset() { head = tail = n = 0; }

// return true iff queue is empty

bool empty() { return n == 0; }

// return true iff queue is full

bool full() { return n >= capacity; }



CMPUT 201, W2014, M. Buro Generic Programming (2): Class Templates 17

// add element to queue (at tail)

// pre-condition: not full

void add(const T & x) { // const& for safety and speed

assert(!full());

data[tail++] = x;

tail %= capacity;

++n;

}

// remove and return head element

// pre-condition: not empty

T remove() {

assert(!empty());

const T &x = data[head++]; // a bit faster (no copy)

head %= capacity;

--n;

return x;

}

private:

int capacity; // maximum number of elements

T *data; // pointer to element array

int head, tail; // current remove/add locations

int n; // actual number of elements stored

};

CMPUT 201, W2014, M. Buro Generic Programming (2): Class Templates 18

Application

How can we put our new shiny Queue class template
to work?

We need to tell the compiler what type of Queue we
want by explicitly instantiating the class template with
the element type enclosed in < > :

Queue<int> iq(100); // int queue

iq.add(1); iqe.add(2);

Queue<double> dq(50); // double queue

dq.add(2.0); dq.add(3.5);

Queue<Point*> dp(20); // Point pointer queue

dp.add(new Point); dp.add(new Point);

For each different instantiation, the compiler creates a
new specific queue class. For this to work, all template
code must reside in header files. Compiling classes mul-
tiple times slows down the compilation process. How-
ever, the fact that class templates only need to be writ-
ten once and then can be applied to arbitrary types
outweighs this disadvantage.

CMPUT 201, W2014, M. Buro Generic Programming (2): Class Templates 19

Exercise: Transform the Vector and SList classes we
have seen in Part 4 into template classes, so that we
can use them like so:

Vector<int> iv(10); // int vector

iv.set(1, 99);

int i = iv.get(0);

Vector<double> dv(10); // double vector

dv.set(1, 3.5);

double d = dv.get(0);

SList<int*> pl; // list of int pointers

pl.add_head(new int);

There is much more to say about template functions,
class templates, and other C++ features we haven’t
covered in this introduction.

To learn more, fire up your browser and search for C++
tutorials.

In the remaining course time we will look at the Stan-
dard Template Library which offers numerous useful
container types and algorithms.

CMPUT 201, W2014, M. Buro C++ Libraries 20

C++ Libraries

Most programming languages have an associated core
library, which is sometimes called “standard library”,
especially if it is included as part of the published lan-
guage standard.

Such libraries are conventionally made available by all
implementations of the language.

Core libraries typically include definitions for commonly
used algorithms, data structures, and mechanisms for
input and output.

The availability of high-quality implementations of stan-
dard data structures and algorithms is important, be-
cause it frees programmers from the tedious and error
prone process of re-inventing the wheel. The time thus
saved can be put into solving the problems at hand.

Throughout this course, we have encountered a few C
library functions (fopen, fclose, fputc, sqrt,

qsort, ...), a C++ library function (std::swap),
and pthread functions.



CMPUT 201, W2014, M. Buro C++ Libraries 21

Compared to Java, though, the C++ standard library
is still small, but its growth is accelerating.

In 1994 Alexander Stepanov and Meng Lee introduced
the Standard Template Library (STL) for C++, which
to this day is the core of the C++ standard library.

The STL is a collection of functions, constants, classes,
objects and templates that extends the C++ language
providing basic functionality to perform several tasks,
like classes to interact with the operating system, data
containers, manipulators to operate with them and al-
gorithms commonly needed.

In addition, the Boost C++ library collection has be-
come rather popular in recent years (www.boost.org).
It can be considered a C++ library development play-
ground, which provides free peer-reviewed portable C++
source libraries, which after intensive testing and im-
provements often make it into the C++ standard.

In the remaining time we can only give a brief STL
overview.

CMPUT 201, W2014, M. Buro Standard Template Library Overview 22

Standard Template Library Overview

The STL contains the following elements:

Container template classes

• Sequence containers
- elements have predefined locations
- vector, forward_list, list, deque,

string, ...

• Associative containers
- element location depends on key
- set, map, hash_set, hash_map, ...

Algorithms

• Container independent (majority)

• sort, find, merge, random_shuffle, ...

Iterators

• pointer-like types used for traversing STL containers

• interface between algorithms and containers

CMPUT 201, W2014, M. Buro Standard Template Library Overview 23

Examples

#include <vector>

#include <algorithm>

using namespace std; // can refer to standard library

// elements without having to use std:: prefix,

// like std::vector or std::generate

int main()

{

// CONTAINERS + ALGORITHMS

vector<int> v(10); // vector of 10 ints, fill with...

generate(v.begin(), v.end(), rand); //... random values

v[0] = 6; // access like array

// loop through vector using ITERATORS

vector<int>::iterator it = v.begin(), end = v.end();

int sum = 0;

for (; it != end; ++it) sum += *it;

// ALGORITHM: shuffle elements randomly

random_shuffle(v.begin(), v.end());

// MEMBER FUNCTIONS: if non-empty, erase first element

if (!v.empty())

v.erase(v.begin());

}

CMPUT 201, W2014, M. Buro Standard Template Library Overview 24

STL Overview (Continued)

STL is part of the C++ standard library

Several implementations exist

g++’s is based on SGI’s

Good Web Sites:

• http://www.cplusplus.com/reference/stl/
• www.sgi.com/tech/stl

Good Books

• Josuttis: “The C++ Standard Library”

• Meyers: “Effective STL”



CMPUT 201, W2014, M. Buro Sequence Containers 25

Sequence Containers

Positions of elements in container are fixed.

vector<T>

• Vector class template, dynamic array functionality

• Element type is T

• #include <vector>

list<T>

• Doubly linked list class template

• Data associated with node is T

• #include <list>

deque<T> (“deck”);

• double-ended queue; supports random access: d[i]

• inserting/deleting at both ends takes amortized con-
stant time

• inserting/deleting in the middle: linear time

• #include <deque>

CMPUT 201, W2014, M. Buro Sequence Containers 26

Sequence Containers (Continued)

basic_string<T>

• sequence of characters

• std::string = basic_string<char>

• similar to vector

• many member functions: insert, append, erase, find,
replace...

• C-string replacement

• #include <string>

Examples:

std::string s = "test";

std::string t = s + " case"; // concatenation works!

const char *cs = s.c_str(); // conversion to C-string

CMPUT 201, W2014, M. Buro Sequence Containers 27

Important std::vector Member Functions

iterator begin() : returns iterator to first element

iterator end() : returns iterator to passed-the-end element

size_type size() : number of elements in vector

bool empty() const : true iff vector is empty

void push_back(const T&) : inserts new element at the end

(amortized constant time)

void pop_back() : removes last element

reference operator[](size_type i): returns element i (starts with 0)

reference back() : returns reference to last element, assumes !empty

void clear() : remove all elements

void erase(iterator pos) : removes element at position pos

void reserve(size_type n) : allocates memory for n elements if needed

bool operator==(const vector&, const vector&) : equality

CMPUT 201, W2014, M. Buro Sequence Containers 28

Iterators

Generalization of pointers

Often used to iterate over ranges of objects

• iterator points to object

• the incremented iterator points to the next object

Central to generic programming

• interface between containers and algorithms

• algorithms take iterators as arguments

• container only needs to provide a way to access its
elements using iterators

• allows us to write generic algorithms operating on
different containers such as vector and list using the
same code



CMPUT 201, W2014, M. Buro Sequence Containers 29

Each container type has its own specific iterator type
which can be used like so:

vector<int> v;

// step through v

vector<int>::iterator it = v.begin(), end = v.end();

// iterator is a type defined in class template vector

// see /usr/include/c++/4.6.3/bits/stl_vector.h

for (; it != end; ++it) {

printf("%d ", *it); // print element iterator points to

}

list<int> l;

// step through l

vector<int>::iterator it = l.begin(), end = l.end();

for (; it != end; ++it) {

printf("%d ", *it); // print element iterator points to

}

Polymorphism at work: The code for stepping through
both containers is identical, but ++it does different
things:

For vectors, the overloaded ++ operator simply incre-
ments an internal pointer wrapped by the iterator object
(vector elements are laid out consecutively in memory,
like arrays). For lists, ++it is equivalent to following
the node successor pointer.

CMPUT 201, W2014, M. Buro Sequence Containers 30

std::vector Examples

#include <vector>

using namespace std;

int main()

{

const int N = 1000;

vector<int> v; // empty integer vector

v.reserve(N); // reserve memory for N elements

// saves time and memory because v doesn’t need to grow;

// v.size() still 0

// append N elements

for (int i=0; i < N; ++i) v.push_back(i);

// add up all elements, array syntax

int s = 0;

for (size_t i=0; i < v.size(); ++i) sum += v[i];

// alternative: use iterator to step through vector;

// a bit faster because above v.size() is called multiple times

s = 0;

vector<int>::iterator it = v.begin(), end = v.end();

for (; it != end; ++it) s += *it;

// remove all elements one by one back to front

while (!v.empty()) v.pop_back();

assert(v.empty());

// when leaving main v is destroyed here

// However, if v contains pointers,

// destructors are *NOT* called on the objects pointers point to!

}

CMPUT 201, W2014, M. Buro Sequence Containers 31

Important std::list Member Functions

iterator begin(): returns iterator to first element

iterator end() : returns iterator to end (last element+1)

size_type size() : number of list elements (linear time!)

bool empty() const: true iff list is empty

void push_front(const T&): inserts new element at front

void push_back(const T&) : inserts new element at end

void pop_front() : removes first element

void pop_back() : removes last element

iterator insert(iterator pos, const T&) :

inserts element in front of pos

void erase(iterator pos) : removes element at position pos

void reverse() : reverses list (linear time!)

void splice(iterator pos, list<T>& x) :

inserts x in front of pos, clears x

CMPUT 201, W2014, M. Buro Sequence Containers 32

std::list Examples

#include <list>

using namespace std;

int main()

{

list<int> list;

list.push_back(0);

list.push_front(1);

list.insert(list.begin(), 2); // = list.push_front(2)

// list now 2 1 0

list<int> x(3, 10); // x is list of 3 tens

// insert x after 2

list.splice(list.begin()+1, x); // x now empty

// print list

// note: code identical to vector code! polymorphism ...

list<int>::iterator it = list.begin(), end = list.end();

for (; it != end; ++it)

printf("%d ", *it);

// output: 2 10 10 10 1 0

// list destructor called here

}



CMPUT 201, W2014, M. Buro Associative Containers 33

Associative Containers

Support efficient retrieval of elements based on keys

Support insertion/removal of elements

Difference to sequence containers: no mechanism for
inserting elements at specific locations. Object location
depends on key.

Here we briefly discuss

• std::set<T> : set of elements of type T.

• std::map<U,V> : maps elements of type U to ele-
ments of type V.

STL’s set and map implementations are based on bal-
anced binary search trees, leading to worst-case runtime
Θ(log n) for insert, delete, and find operations, where
n is the number of stored elements.

CMPUT 201, W2014, M. Buro Associative Containers 34

std::set Example

Sets contain unique elements.

#include <set>

using namespace std;

// set of integers

set<int> s;

// populate s

s.insert(0); s.insert(2); s.insert(1); s.insert(0);

// note: inserting 0 the second time

// doesn’t change the set

// visit all elements stored in set in ascending order

// again, same syntax!

set<int>::iterator it = s.begin(), end = s.end();

for (; it != end; ++it) {

printf("%d ", *it);

}

if (s.find(0) != s.end()) {

printf("found element");

}

// output: 0 1 2 found element

CMPUT 201, W2014, M. Buro Associative Containers 35

std::map Example

Maps contain pairs (u, v), with unique first compo-
nents. (u, v) in map means “u is mapped to v”

#include <map>

using namespace std;

typedef map<int,double> i2d;

i2d m; // maps integers to doubles

// populate m using array index notation

m[0] = 1; // insert pair (0, 1)

m[1] = 2; // insert pair (1, 2)

m[2] = 9; // insert pair (2, 9)

// visit all pairs stored in map

i2d::iterator it = m.begin(), end = m.end();

for (; it != end; ++it) {

printf("%d mapped to %f\n", it->first, it->second);

}

// find mapping for 2

it = m.find(2);

if (it != m.end()) {

// != m.end() => found

// *it is a pair (key, data)

printf("found (%d,%f)\n", it->first, it->second);

}

output:

0 mapped to 1.000000

1 mapped to 2.000000

2 mapped to 9.000000

found (2,9.000000)

CMPUT 201, W2014, M. Buro What else is there in STL? 36

What else is there in STL?

Algorithms

• for setting, copying, swapping, shuffling, finding, and
sorting container elements ...

• use iterators to access container elements

Hashed associative containers (unorderd_set/map)

• organized as hash tables

• faster than standard tree-based containers —
O(1) rather than Θ(log n).

• but need more space

See http://www.cplusplus.com/reference/stl

for more information.



CMPUT 201, W2014, M. Buro What else is there in STL? 37

STL Algorithm Examples

#include <algorithm>

#include <functional>

#include <vector>

std::vector<int> v;

// ascending order; faster than C-lib’s quicksort

std::sort(v.begin(), v.end());

// descending (need to pass comparison object)

std::sort(v.begin(), v.end(), greater<int>());

int A[N];

std::sort(A, A+N); // also works! pointers are

// iterators ...

// sets all elements

std::fill(A, A+N, 314159);

// reverses sequence container

std::reverse(v.begin(), v.end());

// shuffles sequence container

random_shuffle(A, A+N);

CMPUT 201, W2014, M. Buro Wrapping Up ... 38

Wrapping Up ...

C and C++ are powerful programming languages that
give programmers low-level control over memory and
hardware devices.

C++ adds high-level features such as object oriented
and generic programming support, which allows us to
scale up project sizes considerably.

The upside of this flexibility is fast program execution
and transparent resource allocation.

The potential downside is undefined program behaviour
which lurks in many corners if programmers are not
diligent, but tools like debuggers and valgrind can
help identify such problems quickly.

My advice to aspiring programmers is to never stop
learning about programming languages, efficient algo-
rithms and data structures — and to work on as many
programming side-projects as you can. With practice
comes success. Good luck! M.B.

The End


